Từ điểm A nằm ngoài đường tròn (O; R) kẻ các tiếp tuyến AB ,AC với đường tròn (O) ở E ( E khác D ). Gọi H là giao điểm của AO và BC a) chứng minh 4 điểm A,B,O,C cùng thuộc đường tròn và chứng minh AO vuông góc BC tại H b) chứng minh AE.AD=AH.AO c) gọi I là trung điểm của HA. Chứng minh tâm giác AIB đồng dạng với tam giác BHD
Từ một điểm A nằm ngoài đường tròn (O;R), vẽ hai tiếp tuyến AB, AC với đường tròn (B và C là các tiếp điểm).
1) Chứng minh rằng: 4 điểm A, B, C, O cùng nằm trên một đường tròn. 2) Chứng minh rằng: AO vuông góc BC tại trung điểm H của BC. 3) Chứng minh rằng: \(\dfrac{OB^2}{AC^2}=\dfrac{HO}{HA}\) 4) Từ điểm M nằm trên cung lớn BC, kẽ tiếp tuyến thứ 3 với đường tròn tâm O, tiếp tuyến này cắt AB, AC theo thứ tự tại D và E. Biết AD = 7cm, AE = 25cm, DE= 24cm. Tính độ dài các đoạn thẳng AB và BC.
Từ điểm A bên ngoài đường tròn O vẽ 2 tiếp tuyến AB, AC với đường tròn (O) (B, C là 2 tiếp điểm ).Vẽ đường kính BD.Gọi H là giao điểm của AO và BC.
a) Chứng minh OA vuông với BC tại H
b)Chứng minh CD//OA
c)Vẽ CM vuông với BD (M thuộc BD). Chứng minh DM.DB=H^2
Cho đường tròn tâm ( và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm tiếp điểm). Gọi H là giao điểm của OA và BC. a) Chứng minh: AO là đường trung trực của BC và BC= 4.OH. HA. b) AO cắt đường tròn (O) tại I và K ( 1 nằm giữa A và O). Chứng minh: tam giác KBI vuông và AI. KH=IH. KA.
Từ điểm A nằm ngoài (O;R),vẽ 2 tiếp tuyến AB,AC với đường tròn.Gọi H là giao điểm của OA và BC
a) Chứng minh Ao vuông góc với BC và 4 điểm A,B,O,C cùng thuộc 1 đường tròn
b) Kẻ đường kính BD.Gọi E là giao điểm của AD với (O),Chứng minh AC^2=AH.AO và AE.AD=AH.AO
c) Chứng minh EC là tiếp tuyến của (H;HE)
Cho điểm A nằm ngoài đường tròn (O;R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA ⊥ BC và OA // BD
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE . AD = AH . AO
Giúp em với ạ! Em cảm ơn nhiều!!
6. Từ một điểm A ở ngoài đường tròn (C) R) vẽ hai tiếp tuyến AB, AC với đường tròn (F. C là tiếp điểm). Gọi H là giao điểm của OA và BC. (a) Chứng minh bản điểm A. B.0, C cùng nằm trên một đường tròn và ĐA vuông Đốc với BC. (b) Kẻ đường kính CD của đường tròn (C). AD cắt đường tròn (O) tại E. Chung minh CE vuông góc với ADvaDADL = 4OA * O_{B} (c) Kẻ OK vuông góc với D£ tại K. AD cắt BC tại F. Biết 2: 6/cm) và DA 6V5