cho (O;R),dây BC khác dường kính .Qua O kẻ đường vuông góc với BC tai I,cắt tiếp tuyến tại B của đường tròn ở điểm A ,vẽ đường kính BD
a)CM CD//OA
b)CM AC là tiếp tuyến của đường tròn (O)
c) Đường thẳng vuông góc BD tại O cắt BC tại K.CM IK.IC
Cho đường tròn tâm Ở, kẻ tia tiếp tuyến Ax. Trên tia Ax lấy điểm M sao cho AM = R√3. vẽ tiếp tuyến MC( C là tiếp điểm). Đường vuông góc với AB tại Ở cắt BC tại D. a) Cm BD// OM b) xác định tứ giác OBDM c) xác định tứ giác AODM D) gọi E là giao điểm của AD với OM. Gọi F là giao điểm của MC với OD. Chứng minh EF là tiếp tuyến của 0
Cho tam giác đều ABC cạnh 60 cm. Trên cạnh BC lấy điểm D sao cho BD = 20 cm. Đường trung trực của AD cắt các cạnh AB, AC lần lượt tại E và F. Kẻ DI vuông góc với AB tại I, DK vuông góc với AC tại K.
a) Tính độ dài các đoạn thẳng DI, BI, DK, KC.
b) Tính độ dài các cạnh của tam giác DEF.
cho đường tròn tâm O va điểm M nằm ngoài đường tròn.Từ M kẻ tiếp tuyến MA. A là tiếp điểm,từ A kẻ đường vuông góc với OM tại H.Cắt đường tròn tại B
chứng minh HM.HO = HK.HI
Giúp mk vs đang cần gâos , chỉ cần phânf c thoi Từ điểm M nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến MA và MB (A, B là hai tiếp điểm ) , trên nửa mặt phẳng bờ OM chứa điểm A kẻ cát tuyến MCD ( MC< MD )với đường tròn (O). Lấy I là trung điểm của của dây CD. a) Chứng minh: tứ giác MBOI là tứ giác nội tiếp b) BI cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh AE // CD c) Kẻ IK // BD . K thuộc AB. Chứng minh CK ⊥ OB
Cho tam giác ABC nội tiếp đường tròn(O).Tia phân giác của góc BAC cắt đường tròn(O)tại A và D.Đường tròn tâm D,bán kính DB cắt đường thẳng AB tại B và Q,cắt đường thẳng AC tại C và P. a)CMR:OA vuông góc PQ b)Gọi K là giao điểm của BC và PQ.CMR:KB.KC=KP.KQ=R^2-DK^2(với DB=R:bán kính đường tròn(D))
Cho đường tròn (O) và hai đường kính AB,CD vuông góc với nhau.Từ một điểm M tùy ý trên cung AC,vẽ tiếp tuyến với đường tròn (O) tại M.Tiếp tuyến này cắt đường thẳng CD tại S.CMR:
a)SM2=SC.SD
b)góc MSD=2 lần góc MBA
c)Gọi H là giao điểm của MD với OA và K là giao điểm của CM với AD.CMR:HA.KB=HB.KA
Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM. Gọi D, E là chân các đường cao hạ từ H xuống AB, AC. CMR:
a, AD.AB = AE.AC
b, AM vuông góc với DE
c, \(\dfrac{CE}{BD} = (\dfrac{CA}{AB})^2\)
Cho đường tròn (O;R), điểm A nằm ngoài đường tròn, vẽ các tiếp tuyến AB,AC với đường tròn (B,C thuộc O) CD là đường kính của (O).
a)CM: BD//AO.
b)Đoạn AD cắt (O) tại I. CM: I là tâm của đường tròn nối tiếp tam giác ABC.
c) E thuộc cung nhỏ BC.Tiếp tuyến tại E với đường tròn (O) cắt AB,AC lần lượt tại M và N. Cho AO=2R. tính góc MON và chu vi tam giác AMN