1.
Với \(m=2\Rightarrow\) pt có nghiệm \(x=-2\) (thỏa mãn)
Với \(m\ne2\) pt đã cho có nghiệm khi:
\(\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\)
\(\Leftrightarrow-m^2+4m-3\ge0\Rightarrow1\le m\le3\)
Vậy \(1\le m\le3\)
b.
Để pt có 2 nghiệm pb \(\Leftrightarrow\left\{{}\begin{matrix}1< m< 3\\m\ne2\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-4m+6}{m-2}\\x_1x_2=\dfrac{5m-6}{m-2}\end{matrix}\right.\)
\(x_1+x_2+x_1x_2>2013\)
\(\Leftrightarrow\dfrac{-4m+6}{m-2}+\dfrac{5m-6}{m-2}>2013\)
\(\Leftrightarrow\dfrac{m}{m-2}>2013\)
\(\Leftrightarrow\dfrac{-2012m+4026}{m-2}>0\)
\(\Leftrightarrow2< m< \dfrac{2013}{1006}\)
2.
\(\overrightarrow{AB}=\left(7;7\right)=7\left(1;1\right)\)
Gọi M là trung điểm AB \(\Rightarrow M\left(\dfrac{3}{2};\dfrac{1}{2}\right)\)
Phương trình trung trực của AB có dạng:
\(1\left(x-\dfrac{3}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow x+y-2=0\)
I là tâm đường tròn \(\Rightarrow\) I thuộc trung trực của AB
\(\Rightarrow\) Tọa độ của I là nghiệm: \(\left\{{}\begin{matrix}x+y-2=0\\-x+y-2=0\end{matrix}\right.\) \(\Rightarrow I\left(0;2\right)\)
\(\Rightarrow\overrightarrow{IA}=\left(-2;-5\right)\Rightarrow R^2=IA^2=29\)
Phương trình đường tròn:
\(x^2+\left(y-2\right)^2=29\)
3.
\(\overrightarrow{BC}=\left(1;8\right)\)
Đường cao kẻ từ A vuông góc BC nên nhận (1;8) là 1 vtpt
Phương trình:
\(1\left(x-1\right)+8\left(y-2\right)=0\Leftrightarrow x+8y-17=0\)
b.
\(\overrightarrow{AC}=\left(2;3\right)\Rightarrow\) phương trình AC có dạng:
\(3\left(x-1\right)-2\left(y-2\right)=0\Leftrightarrow3x-2y+1=0\)
\(R=d\left(B;AC\right)=\dfrac{\left|3.2-2.\left(-3\right)+1\right|}{\sqrt{3^2+\left(-2\right)^2}}=\sqrt{13}\)
Phương trình: \(\left(x-2\right)^2+\left(y+3\right)^2=13\)
c. \(\overrightarrow{AB}=\left(1;-5\right)\)
\(\Rightarrow cos\left(AB;AC\right)=\dfrac{\left|1.2-5.3\right|}{\sqrt{2^2+3^2}.\sqrt{1^2+\left(-5\right)^2}}=\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\left(AB;AC\right)=45^0\)