1a.
\(\left|x^2-4x-1\right|\ge1\Leftrightarrow\left[{}\begin{matrix}x^2-4x-1\ge1\\x^2-4x-1\le-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-2\ge0\\x^2-4x\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge2+\sqrt{6}\\x\le2-\sqrt{6}\\0\le x\le4\end{matrix}\right.\)
1b.
\(A=3\left(sin^4x-cos^4x\right)\left(sin^4x+cos^4x\right)+4cos^6x-8sin^6x+6sin^4x\)
\(=3\left(sin^2x-cos^2x\right)\left(sin^4x+cos^4x\right)+4cos^6x-2sin^6x+6sin^4x\left(1-sin^2x\right)\)
\(=3sin^6x-3cos^6x+3sin^2x.cos^4x-3sin^4x.cos^2x+4cos^6x-2sin^6x+6sin^4x.cos^2x\)
\(=sin^6x+3sin^2x.cos^4x+3sin^4x.cos^2x+cos^6x\)
\(=\left(sin^2x+cos^2x\right)^3=1\)
2.
a. \(\overrightarrow{CB}=\left(6;-2\right)=2\left(3;-1\right)\)
\(\overrightarrow{AB}=\left(9;-3\right)=3\left(3;-1\right)\)
\(\Rightarrow\overrightarrow{CB}=\dfrac{2}{3}\overrightarrow{AB}\Rightarrow\) ba điểm A;B;C thẳng hàng
\(\Rightarrow\) Đề bài sai, không có tam giác nào ở đây và do đó đương nhiên không thể dựng được đường cao của ABC
b. Gọi M là trung điểm AB \(\Rightarrow M\left(\dfrac{3}{2};\dfrac{1}{2}\right)\)
Phương trình trung trực AB có dạng:
\(3\left(x-\dfrac{3}{2}\right)-1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow3x-y-4=0\)
Gọi I là tâm đường tròn \(\Rightarrow\) tọa độ I thỏa mãn:
\(3.6t-\left(1-2t\right)-4=0\Rightarrow t=\dfrac{1}{4}\Rightarrow I\left(\dfrac{3}{2};\dfrac{1}{2}\right)\)
\(\Rightarrow\overrightarrow{IA}=\left(-\dfrac{9}{2};\dfrac{3}{2}\right)\Rightarrow R^2=IA^2=\dfrac{45}{2}\)
Phương trình: \(\left(x-\dfrac{3}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{45}{2}\)