Xét \(k=100\) ta dễ dàng tìm được tập số có n số mà trong đó không có số nào là bội của số kia. \(\left\{101;102;...;200\right\}\)
Ta chứng minh với \(k=101\)thì bài toán đúng
Ta lấy ra ngẫu nhiên 101 số từ tập hợp 200 số đã cho \(\left\{a_1;a_1;...;a_{101}\right\}\)
Ta biểu diễn 101 số này thành dạng
\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2;...;a_{101}=2^{x_{101}}.b_{101}\)
Với \(x_1;x_2;...;x_{101}\)là các số tự nhiên, \(b_1;b_2;...;b_{101}\)là các số lẻ và
\(1\le b_1;b_2;...;b_{101}\le199\)
Ta thấy rằng từ 1 đến 199 có tất cả 100 số lẻ vì thế trong 101 số đã chọn ra tồn tại \(m>n\) sao cho \(b_m=b_n\). Hai số này chính là bội của nhau.
Vậy với k nhỏ nhất là 101 thì thỏa mãn yêu cầu bài toán.