Bài 7: Biến đối đơn giản biểu thức chứa căn bậc hai (Tiếp theo)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
illumina

Trục căn thức ở mẫu (giải chi tiết):

F = \(\dfrac{6}{2\sqrt{3}+\sqrt{2}}\)

G = \(\dfrac{1}{\sqrt{a}+b}\)

H = \(\dfrac{2}{\sqrt{a}-\sqrt{b}}\)

K = \(\dfrac{2xy}{2\sqrt{x}+3\sqrt{y}}\)

Mai Trung Hải Phong
22 tháng 5 2023 lúc 15:52

Trước hết, ta cần tính giá trị của a và b trong G và H:
$$G^2 = \frac{1}{a+b} \Rightarrow a+b = \frac{1}{G^2}$$
$$H^2 = 4a - 4\sqrt{ab} + 4b = 4(\sqrt{a} - \sqrt{b})^2 \Rightarrow \sqrt{a} - \sqrt{b} = \frac{H}{2}$$
Từ đó, suy ra được:
$$\sqrt{a} + \sqrt{b} = \frac{1}{G}\sqrt{\frac{1}{G^2} + 4}$$
$$\Rightarrow 2\sqrt{a} = \frac{1}{G}\sqrt{\frac{1}{G^2} + 4} + H$$
$$\Rightarrow a = \left(\frac{1}{G}\sqrt{\frac{1}{G^2} + 4} + H\right)^2/4$$
$$\Rightarrow b = \left(\frac{1}{G}\sqrt{\frac{1}{G^2} + 4} - H\right)^2/4$$

Tiếp theo, ta tính giá trị của F:
$$F = 6\sqrt{3} + \sqrt{2} = 6\sqrt{3} + \sqrt{2}\frac{\sqrt{6}+\sqrt{2}}{2} = 6\sqrt{3} + 3\sqrt{2} + 3\sqrt{6}$$

Cuối cùng, ta tính giá trị của K:
$$K = 2xy\left(2\sqrt{x} + 3\sqrt{y}\right) = 2\sqrt{xy}(4\sqrt{x} + 6\sqrt{y})$$

Vậy, ta đã tính được giá trị của F, G, H và K.


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Vân
Xem chi tiết
Ngọc Thư
Xem chi tiết
phamthiminhanh
Xem chi tiết
Lê Thuỳ Lin
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Thị Diệu Hiền
Xem chi tiết