Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Ánh Ngọc

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có tâm đường tròn ngoại tiếp tam giác ABC là I(-2;1) và thỏa mãn điều kiện \(\widehat{AIB}=90^0\), chân đường cao kẻ từ A đến BC là D(-1;-1), đường thẳng AC đi qua điểm M(-1;4). Tìm tọa độ các đỉnh A,B biết rằng đỉnh A có hoành độ dương.

Bắc Băng Dương
7 tháng 4 2016 lúc 13:40

I C M A D B

Do \(\widehat{AIB}=90^0\Rightarrow\widehat{ACB}=45^0\) hoặc \(\widehat{ACB}=135^0\Rightarrow\widehat{ACD}=45^0\Rightarrow\Delta ACD\) vuông cân tại D nên DA=DC

Hơn nữa IA=IC => \(DI\perp AC\Rightarrow\) đường thẳng AC thỏa mãn điều kiện AC qua điểm M và AC vuông góc ID.

Viết phương trình đường thẳng AC : \(x-2y+9=0\)

Gọi \(A\left(2a-9;a\right)\in AC\). Do \(DA=\sqrt{2}d\left(D,AC\right)=2\sqrt{10}\) nên

\(\sqrt{\left(2a-8\right)^2+\left(a+1\right)^2}=2\sqrt{10}\Leftrightarrow a^2-6a+5=0\)

                                                  \(\Leftrightarrow\begin{cases}a=1\Rightarrow A\left(-7;1\right)\\a=5\Rightarrow A\left(1;5\right)\end{cases}\)

Theo giả thiết đầu bài \(\Rightarrow A\left(1;5\right)\)

Viết phương trình đường thẳng DB : \(x+3y+4=0\). Gọi \(B\left(-3b-4;b\right)\)

Tam giác IAB vuông tại I nên : \(\overrightarrow{IA.}\overrightarrow{IB}=0\Leftrightarrow3\left(-3b-2\right)+4\left(b-1\right)=0\Leftrightarrow b=-2\Rightarrow B\left(2;-2\right)\)

Đáp số \(A\left(1;5\right);B\left(2;-2\right)\)


Các câu hỏi tương tự
Kiên NT
Xem chi tiết
muon tim hieu
Xem chi tiết
Đặng Thị Phương Anh
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Lê Thu Hiền
Xem chi tiết