Áp dụng công thức khoảng cách:
\(d\left(M;\Delta\right)=\frac{\left|2.3+4.1+5\right|}{\sqrt{3^2+4^2}}=\frac{15}{5}=3\)
Áp dụng công thức khoảng cách:
\(d\left(M;\Delta\right)=\frac{\left|2.3+4.1+5\right|}{\sqrt{3^2+4^2}}=\frac{15}{5}=3\)
trong mặt phẳng với hệ tọa độ Oxy , cho ΔABC có đường tròn nội tiếp tiếp xúc với 3 cạnh BC,CA,AB lần lượt tại M,N,P .Gọi D là trung điểm cạnh BC .Biết M(-1,1) ,pt NP: x+y-4=0 và pt AD : 14x-13y+7=0 .Tìm tọa độ A
trong mặt phẳng với hệ tọa độ Oxy , cho ΔABC có đường tròn nội tiếp tiếp xúc với 3 cạnh BC,CA,AB lần lượt tại M,N,P .Gọi D là trung điểm cạnh BC .Biết M(-1,1) ,pt NP: x+y-4=0 và pt AD : 14x-13y+7=0 .Tìm tọa độ A
Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC có đường cao AH : 3x-y+8=0 và đường trung tuyến AM: 3x+y-2=0 . Biết H, M thuộc BC ,\(\widehat{BAH}=\widehat{MAC}\) và \(BC=3\sqrt{10}\) . Viết phương trình tổng quát của đường thẳng BC.
Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(d:x-y+1=0\) . Viết phương trình đường thẳng d' là ảnh của đường thẳng d qua phép đối xứng tâm \(A\left(5;-2\right)\)
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 6x + 3y -1 =0 và mặt cầu (S): x2 + y2 + z2 -6x -4y -2z -11 =0. Chứng minh mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn (C). Tìm tọa độ tâm của (C).
Mọi người giúp m vs ạ
Bài 5. Cho hình chóp SABCD có đáy ABCD là hình chữ nhật; mặt phẳng (SAB) và (SAD)cùng vuông góc với đáy. Biết AB=a;AD=2a
a. Cmr SA (ABCD)
b. Biết góc giữa SD với mặt phẳng (ABCD) bằng 60° .Tính SA theo a
c.Tính khoảng cách từ điểm A đến mặt phẳng (SCD)
d. Gọi I là trung điểm AD, Tính khoảng cách từ điểm I đến mặt phẳng (SBC).
cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, góc giữa SD và mặt phẳng ABCD là 45 độ, SA vuông góc (ABCD). M là trung điểm BC. Tính khoảng cách DM và SC
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên \(SA=a\sqrt{3}\) và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm A đến mặt phẳng (SBD).
Cho hình chóp tứ giác lồi S.ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong tam giác SC.
a,Tìm giao điểm I của CD và mặt phẳng (ABM)
b, Tìm giao điểm K của SD và mặt phẳng (ABM)