a.trong mặt phẳng tọa độ Oxy với giá trị nào của a,b thì đường thẳng (d):y=ax+2-b và đường thẳng (d'):y=(3-a)x+b song song với nhau
b.viết phương trình đường thẳng (d) đi qua 2 điểm A(1;2) và B(2;0)
a.trong mặt phẳng tọa độ Oxy, đường thẳng y=ax+b đi qua điểm m(-1;2) và song song với đường thẳng y=3x+1. tìm hệ số a và b
b.trong hệ trục tọa độ Oxy biết đường thẳng y=ax-1 đi qua điểm M(-1;1) tìm hệ số a
a) Tìm các giá trị của a và b để đường thẳng (d): y=ax+b đi qua hai điểm M(1;5) và N(2;8).
b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – a + 1 và parabol (P): y = \(\dfrac{1}{2}x^2\).
1.Tìm a để đường thẳng a đi qua điểm A (-1;3)
2.Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ (\(x_1;x_2\)) và (\(x_2;y_2\)) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
Cho hai đường thẳng (D): y = -x - 4 và (D1): y= 3x + 2
a) Vẽ đồ thị (D) và (D1) trên cùng một mặt phẳng tọa độ Oxy.
b) Xác định tọa độ giao điểm A của hai đường thẳng (D) và (D1) bằng phép toán.
c) Viết phương trình đường thẳng đi qua (D2): y = ax + b (a≠0) song song với đường thẳng (D) và đi qua điểm B(-2 ; 5).
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d):y=(a-2)x+b đi qua điểm M(-2;-1) và song song với đường thẳng y=x+2. Tìm các số a và b
(Làm hộ mình câu c nha)
Trong mặt phẳng tọa độ Oxy cho parabol (P): \(y=-x^2\) và đường thẳng (d) đi qua I(0;-1) và có hệ số góc k
a) CMR với mọi k thì đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt A;B
b) Gọi hoành độ của A; B lần lượt là x1;x2. CM: \(\left|x_1-x_2\right|\ge2\)
c) Chứng minh: Tam giác OAB vuông
Trong mặt phẳng tọa độ Oxy , cho parabol (P) : y= -1/2 x^2
a) Vẽ parabol (P)
b) Gọi M là điểm thuộc (P) có hoành độ xM = 2 . Viết pt đường thẳng đi qua M và cắt hai trục tọa độ tại 2 điểm A và B sao cho OA =OB
Trên mặt phẳng tọa độ Oxy cho 3 điểm A(1;-1), B(3;3), C(-1; -5)
a) Viết PT đường thẳng qua A và C
b) Chứng tỏ 3 điểm A, B, C thẳng hàng
Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=-x^2\) và đường thẳng (d) đi qua điểm I(0;-1) và có hệ số góc k.
a) Gọi hoành độ của A; B lần lượt là x1, x2. Chứng minh: \(\left|x_1-x_2\right|\ge2\)
b) Chứng minh: Tam giác OAB vuông