`d(I , d) = R`
`=> [ | 4 . 1 - 3 . (-1) + 3 | ] / \sqrt{4^2 + (-3)^2} = R`
`=> R = 2`
$\bullet$ Ptr đường tròn là: `( x - 1 )^2 + ( y + 1 )^2 = 4`
`d(I , d) = R`
`=> [ | 4 . 1 - 3 . (-1) + 3 | ] / \sqrt{4^2 + (-3)^2} = R`
`=> R = 2`
$\bullet$ Ptr đường tròn là: `( x - 1 )^2 + ( y + 1 )^2 = 4`
Trong mặt phẳng Oxy, cho điểm I(1;-1) và đường thẳng d:x+y+2=0.Viết phương trình đường tròn tâm I cắt d tại hai điểm phân biệt A,B sao cho AB=2
Trong mặt phẳng Oxy, hãy lập phương trình của đường tròn (C) có tâm điểm \(\left(2;3\right)\) và thỏa mãn điều kiện sau :
a) (C) có bán kính là 5
b (C) đi qua gốc tọa độ
c) (C) tiếp xúc với trục Ox
d) (C) tiếp xúc với trục Oy
e) (C) tiếp xúc với đường thẳng \(\Delta:4x+3y-12=0\)
trong mặt phẳng oxy, cho M(-1;1) , N(1;-3). Viết phương trình đường tròn đi qua hai điểm M,N và có tâm nằm trên đường thẳng d:2x-y+1=0
Trong mặt phẳng tọa độ Oxy cho 2 điểm A( 1;2) B (3;4) và đường thẳng (d): 3x+y-3=0
a) gọi (C1) (C2) là 2 đường tròn cùng đi qua qua 2 điểm A, B và tiếp xúc với (O). Lập phương trình của 2 đường tròn trên
b) Tìm tọa độ của điểm M trên (d) sao cho từ đó vẽ được 1 tiếp tuyến chung (d) # (d) của đường tròn (C1) và (C2)
trong mặt phẳng tọa độ Oxy cho điểm E(3;4), đường thẳng d : x + y - 1 = 0 và đường tròn (C) : x2 + y2 + 4x - 2y - 4 = 0 . Gọi M (m;1-m) là điểm nằm trên đường thẳng d và nằm ngoài đường tròn (C), từ M kẻ các tiếp tuyến MA, MB tới đường tròn (C), với A,B là các tiếp điểm. Gọi (E) là đường tròn tâm E và tiếp xúc với đường thẳng AB. Khi đường tròn (E) có chu vi lớn nhất. Tìm tọa độ điểm M
Trong mặt phẳng tọa độ Oxy cho điểm A(3,1) và đường thẳng (d): x+y-2=0
a) Viết pt đường tròn (C) tâm A tiếp xúc với đường thẳng (d)
b)Viết pt tiếp tuyến vs đường tròn (C) kẻ từ O(0,0)
c) Tính bán kính đường tròn (C') tâm A, biết (C') cắt (d) tại 2 điểm E,F sao cho diện tích tam giác AEF= 6
mong mọi người giúp e ạ
Viết phương trình đường tròn tâm I(1;-3) và tiếp xúc với đường thẳng x-2y+3=0
lập phương trình đường tròn qua A( 5,3) và tiếp xúc với đường thẳng (d) : x+3y+2=0 tại điểm B( 1,-1)
1) Viết phương trình đường tròn đi qua A(1; 3) và tiếp xúc với 2 đường thẳng 5x+y-3=0 và -2x+7y-1 = 0
2) Viết pt đường tròn tâm thuộc đường thẳng 2x+y-0 và tiếp xúc với (d) x-7y+10=0 tại A(4;3)
Lập phương trình đường tròn (C) có tâm I(-1; 2) và tiếp xúc với đường thẳng d : x – 2y + 7 = 0