Do đường tròn tiếp xúc (d) tại B nên tâm đường tròn (C) sẽ nằm trên đường thẳng \(d_1\) qua B và vuông góc d
Phương trình \(d_1\) có dạng:
\(3\left(x-1\right)-1\left(y+1\right)=0\Leftrightarrow3x-y-4=0\)
Do đường tròn đi qua A và B nên tâm đường tròn cũng nằm trên trung trực \(d_2\) của AB. Gọi M là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-4;-4\right)=-4\left(1;1\right)\\M\left(3;1\right)\end{matrix}\right.\)
Phương trình \(d_2\):
\(1\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow x+y-4=0\)
Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}3x-y-4=0\\x+y-4=0\end{matrix}\right.\) \(\Rightarrow I\left(2;2\right)\)
\(\Rightarrow R=IA=\sqrt{3^2+1^2}=\sqrt{10}\)
Phương trình: \(\left(x-2\right)^2+\left(y-2\right)^2=10\)