Giả sử đường thẳng \(\Delta\) cần tìm có phương trình dạng :
\(ax+by+a-3b=0,a^2+b^2\ne0\)
Khi đó :
\(d\left(A;\Delta\right)=\frac{\left|a+2b+a-3b\right|}{\sqrt{a^2+b^2}}=\frac{\left|2a-b\right|}{\sqrt{a^2+b^2}}\)
\(d\left(B;\Delta\right)=\frac{\left|3a+4b+a-3b\right|}{\sqrt{a^2+b^2}}=\frac{\left|4a+b\right|}{\sqrt{a^2+b^2}}\)
Do \(\Delta\) cách đều A, B nên \(d\left(A;\Delta\right)=d\left(B;\Delta\right)\) hay :
\(\frac{\left|2a-b\right|}{\sqrt{a^2+b^2}}=\frac{\left|4a+b\right|}{\sqrt{a^2+b^2}}\)\(\Leftrightarrow\left|2a-b\right|=\left|4a+b\right|\)
\(\Leftrightarrow\begin{cases}a=-b\\a=0\end{cases}\)
- Nếu a=0 thì do \(a^2+b^2\ne0\) nên \(b\ne0\) tùy ý. Do đó, có thể chọn b =1 và ta được \(\Delta_1:y-3=0\)
- Nếu a=-b thì do \(a^2+b^2\ne0\) nên \(b\ne0\) tùy ý. Do đó, có thể chọn a = 1, b=-1 và ta được \(\Delta_2:x-y+4=0\)
Vậy qua C có 2 đường thẳng \(\Delta_1:y-3=0\) và \(\Delta_2:x-y+4=0\) thỏa mãn yêu cầu đề bài
Đường thẳng \(\Delta\) cách đều 2 điểm A, B khi và chỉ khi hoặc \(\Delta\) song song với AB hoặc \(\Delta\) đi qua trung điểm đoạn AB
- Nếu \(\Delta\) // AB thì \(\Delta\) nhận vec tơ \(\overrightarrow{AB}=\left(2;2\right)=2\left(1;1\right)\) làm vec tơ chỉ phương, suy ra nếu có vec tơ pháp tuyến \(\overrightarrow{n}=\left(1;-1\right)\). Vậy \(\Delta:x-y+4=0\)
- Nếu \(\Delta\) đi qua trung điểm M(2;3) của đoạn AB thì \(\Delta\) nhận vec tơ \(\overrightarrow{CM}=\left(3;0\right)=3\left(1;0\right)\) làm vec tơ chỉ phương, suy ra nếu có vec tơ pháp tuyến \(\overrightarrow{m}=\left(0;1\right)\). Vậy \(\Delta:y-3=0\)
àm vec tơ chỉ phương, suy ra nếu có vec tơ pháp tuyến \(\overrightarrow{m}=\left(0;1\right)\). Vậy \(\Delta:y-3=0\)
\(\Delta\) đi qua trung điểm M(2;3) của đoạn AB thì nhận vec tơ \(\overrightarrow{CM}=\left(3;0\right)=3\left(1;0\right)\)