Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minecraftboy01

trong kì thi olympic có 17 học sinh thi môn toán được mang số báo danh là số tự nhiên trong khoảng từ 1 đến 1000. Chứng minh rằng có thể chọn ra 9 học sinh thi toán có tổng số báo danh được mang chia hết cho 9

Havee_😘💗
4 tháng 2 2020 lúc 15:49

Với 5 số tự nhiên đôi một khác nhau tùy ý thì có hai trường hợp xảy ra:
+ TH1: Có ít nhất 3 số chia cho 3 có số dư giống nhau =>Tổng ba số tương ứng chia hết cho 3.
+ TH2: Có nhiều nhất 2 số chia cho 3 có số dư giống nhau => Có ít nhất 1 số chia hết cho 3 , 1 số chia cho 3 dư 1, 1 số chia cho 3 dư 2

=> Luôn chọn được 3 số có tổng chia
hết cho 3.

Do đó ta chia 17 số là số báo danh của 17 học sinh thành 3 tập có lần lượt 5, 5, 7 phần tử.
Trong mỗi tập, chọn được 3 số có tổng lần lượt là \(3a_1,3a_2,3a_3\) (\(a_1,a_2,a_3\) ∈ N)
Còn lại 17 - 9 = 8 số, trong 8 số còn lại, chọn tiếp 3 số có tổng là \(3a_4\)
Còn lại 5 số chọn tiếp 3 số có tổng là \(3a_5\)
Trong 5 số \(a_1,a_2,a_3,a_4,a_5\) có 3 số \(a_1,a_2,a_3\) có tổng chia hết cho 3 .
Nên 9 học sinh tương ứng có tổng các số báo danh là \(3\left(a_1+a_2+a_3\right)⋮9\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Wed Wed
Xem chi tiết
Tống Cao Sơn
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết