Trong không gian với hệ toán độ Oxyz, cho đường thẳng d:\(\frac{x}{1}\)=\(\frac{y+1}{2}\)=\(\frac{z+2}{3}\) và mặt phẳng (P):x+2y-2z+3=0 . Điểm M nào dưới đây thuộc đường (đ) và cách mặt phẳng (P) một đoạn bằng (2)?
trong không gian với hệ tọa độ Oxyz, cho 2 đường thẳng d1, d2 lần lượt có phương trình d1:\(\left\{{}\begin{matrix}x=1+t\\y=2-t\\z=1\end{matrix}\right.\), d2: \(\frac{x-2}{1}=\frac{y-1}{-2}=\frac{z+1}{2}\). Mặt phẳng (P) thay đổi nhưng luôn song song với d1, d2. Tính giá trị nhỏ nhất của tổng khoảng cách từ d1 và d2 đến (P)
Trong không gian Oxyz cho I(3; 1;-1) và M(1; 4;2). Mặt phẳng (P) qua M và tiếp xúc với mặt cầu tâm I bán kính IM. Phương trình (P) là:
A. 2x-3y-3z+16=0. B. -2x + 3y + 3z +16 = 0. C. 3x + y – z -5 =0. D. x+4y+z-18=0.
Trong không gian với hệ tọa độ Oxyz. Gọi M là tọa độ giao điểm của đường thẳng \(\Delta:\frac{x-2}{-3}=\frac{y}{1}=\frac{z+1}{2}\) và mặt phẳng (P) : x+2y-3z+2=0. Khi đó tọa độ điểm M bao nhiêu?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): \(x^2+y^2+z^2-2x+6y-8z-10=0\) và mặt phẳng (P): \(x+2y-2z=0\). Viết phương trình mặt phẳng (Q) song song với (P) và tiếp xúc với (S).
Trong không gian Oxyz, cho bốn điểm A(0;0;1), B(1;2;4), C(1;0;1) và D(2;1;2). Gọi (P) là mặt phẳng qua C,D và song song với đường thẳng AB. Phương trình của (P) là:
A. x - 2y + z - 2 = 0.
B. 3x - 2y - z - 2 = 0.
C. 3x - z - 2 = 0.
D. 3x - 2y - z - 1 = 0.
Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt phẳng \(\left(P\right):x+y-z+2=0\) và hai đường thẳng \(d:\left\{{}\begin{matrix}x=1+t\\y=t\\z=2+2t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=3-t'\\y=1+t'\\z=1-2t'\end{matrix}\right.\). Biết rằng có hai đường thẳng có các đặc điểm: song song với \(\left(P\right)\), cắt \(d\), \(d'\) và tạo với \(d\) góc \(30^\circ\). Gọi hai đường thẳng đó là \(\Delta_1\) và \(\Delta_2\), tính \(\cos\widehat{\left(\Delta_1;\Delta_2\right)}=?\)
A. \(\dfrac{1}{\sqrt{2}}\)
B. \(\dfrac{1}{\sqrt{5}}\)
C. \(\dfrac{1}{2}\)
D. \(\sqrt{\dfrac{2}{3}}\)
Trong không gian với hệ toạ độ \(Oxyz\), cho mặt cầu \(\left(S\right)\) có phương trình \(x^2+\left(y+1\right)^2+\left(z-2\right)^2=10\) và và đường thẳng \(\Delta\) có phương trình chính tắc là \(\dfrac{x}{2}=\dfrac{y}{-1}=\dfrac{z-1}{2}\). Gọi \(\left(P\right)\) là mặt phẳng thay đổi chứa \(\Delta\). Khi \(\left(P\right)\cap\left(S\right)\) theo đường tròn có bán kính nhỏ nhất, hãy viết phương trình mặt phẳng \(\left(P\right)\) và tính bán kính đường tròn giao tuyến đó.
A. \(\left(P\right):2x-2y+3z+4=0; r=1\)
B. \(\left(P\right):x+y+4z-2=0;r=6\)
C. \(\left(P\right):2x+2y-z+1=0;r=3\)
D. \(\left(P\right):3x-y+2z-1=0;r=4\)
Trong không gian Oxyz, cho điểm A(1;2;3) và đường thẳng d : \(\frac{x-3}{2}\)=\(\frac{y-1}{1}\)=\(\frac{z+7}{-2}\) . Đường thẳng đi qua A , vuông góc với đ và cắt trục Ox có phương trình là