Cho hình chóp S.ABCD có đáy là hình thoi ABCD và SA = SB = SC = SD. Gọi O là giao điểm của AC và BD. Chứng minh rằng :
a) Đường thẳng SO vuông góc với mặt phẳng (ABCD)
b) Đường thẳng AC vuông góc với mặt phẳng (SBD) và đường thẳng BD vuông góc với mặt phẳng (SAC)
Một đoạn thẳng AB không vuông góc với mặt phẳng \(\left(\alpha\right)\) cắt mặt phẳng này tại trung điểm O của đoạn thẳng đó. Các đường thẳng vuông góc với \(\left(\alpha\right)\) qua A và B lần lượt cắt mặt phẳng \(\left(\alpha\right)\) tại A' và B'. Chứng minh ba điểm A', O, B' thẳng hàng và AA' = BB' ?
Cho hình chóp S.ABCD, có đáy ABCD là hình vuông tâm O có cạnh bằng a,SA=a√3 và SA vuông góc với (ABCD) a,CMR:DC vuông góc với (SAD) b, Tính góc giữa đường thẳng SD và mặt phẳng (ABCD)
Cho hình chóp S ABCD, có đáy là hình vuông tâm O, SA vuông góc với mặt phẳng (ABCD). Gọi H, I, K lần lượt là hình chiếu vuông góc của điểm A lên SB, SC, SD.
1.CMR : AH, AK cùng vuông góc với SC. Từ đó suy ra 3 đường thẳng AH, AI, AK cùng nằm trong một mặt phẳng.
2. Chứng minh rằng HK⊥(SAC) , HK ⊥ AI.
Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$ và $SA$ vuông góc với mặt phẳng $(ABCD)$. Gọi $O$ là trung điểm của cạnh $SC$, $M$, $N$ lần lượt là trung điểm của các cạnh $SB$, $SD$. Gọi $P$ là điểm nằm trên đường thẳng $AN$ sao cho $OP \perp AM$. Chứng minh rằng: $$\frac{PM}{PN} = \frac{1}{3}.$$ **Lời giải:** Áp dụng định lí Menelaus lần lượt trên tam giác $ABC$ và $ACD$, ta có: $$\frac{SM}{SB}\cdot \frac{BO}{OC}\cdot \frac{CQ}{QA} = 1,$$ $$\frac{SD}{SC}\cdot \frac{CO}{OB}\cdot \frac{BP}{PA} = 1,$$ trong đó $Q$ là giao điểm của $SN$ và $OM$. Do đó, ta có: $$\frac{SM}{SB} = \frac{SC}{SO},$$ $$\frac{SD}{SC} = \frac{SB}{SO}.$$ Tiếp theo, ta chứng minh $AP \parallel DC$. Ta có $\angle BSA = 90^{\circ}$ và $\angle BSC = \angle DSC$ nên tam giác $BSD$ vuông cân tại $S$. Do đó $SM = NS$. Khi đó, ta có: $$\frac{SM}{SB} = \frac{NS}{NB} = \frac{1}{2}.$$ Từ đó ta suy ra $\frac{SC}{SO} = \frac{1}{2}$, hay $SO = 2SC$. Áp dụng định lí Pythagore trong tam giác $SBO$ ta có: $SB = \sqrt{2}a$. Mặt khác, ta có $OM = \frac{1}{2}a$ và $OS = \frac{2}{3}SC = \frac{1}{3}a$, suy ra $BM = \frac{\sqrt{2}}{2}a$ và $BO = \frac{\sqrt{6}}{2}a$. Áp dụng định lí Pythagore trong tam giác $SDO$ ta có: $SD = \sqrt{6}a$. Mặt khác, ta có $ON = \frac{1}{2}a$ và $OS = \frac{2}{3}SC = \frac{1}{3}a$, suy ra $DN = \frac{\sqrt{2}}{2}a$ và $DO = \frac{\sqrt{6}}{2}a$. Ta có $AP \parallel DC$ khi và chỉ khi: $$\frac{BP}{PA} = \frac{AD}{DC} = \sqrt{2} - 1,$$ trong đó ta đã sử dụng tính chất hình học của hình vuông. Từ định lí Menelaus cho tam giác $ACD$, ta có: $$\frac{AD}{CD}\cdot \frac{CP}{PA}\cdot \frac{NB}{ND} = 1.$$ Do đó, ta có: $$\frac{BP}{PA} = \frac{AD}{CD}\cdot \frac{ND}{NB} = (\sqrt{2} - 1)\cdot \frac{\frac{1}{2}a}{\frac{\sqrt{2}}{2}a} = \frac{2 - \sqrt{2}}{2}.$$ Ta cũng có thể tính được $\frac{PM}{PN}$ bằng cách sử dụng định lí Menelaus cho tam giác $ANB$: $$\frac{AP}{PB}\cdot \frac{MB}{MN}\cdot \frac{SN}{SA} = 1,$$ từ đó ta có: $$\frac{PM}{PN} = \frac{SN}{SM}\cdot \frac{PB}{PA}\cdot \frac{MB}{NB} = \frac{2}{1}\cdot \frac{2 - \sqrt{2}}{2}\cdot \frac{\frac{\sqrt{2}}{2}a}{\frac{\sqrt{2}}{2}a} = \frac{1}{3}.$$ Vậy $\frac{PM}{PN} = \frac{1}{3}$, ta đã chứng minh được bài toán.
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a có cạnh SA=a căn 2 và SA vuông góc với mặt phẳng với (ABCD).Tính a) Góc giữa đường thẳng BC và mặt phẳng (SAB) b)Góc giữa đường thẳng DC và mặt phẳng (SAB)
Cho 3 điểm A, B, C không thẳng hàng, tìm vị trí của mp(\(\alpha\)) chứa đường thẳng BC và tạo với AB 1 góc lớn nhất.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB=a, BC=a√3 ; ∆SBC vuông tại B, ∆SCD vuông tại A, SD=a√5a, Chứng minh SA ⊥ (ABCD) và tính SAb, Đường thẳng qua A vuông góc với AC cắt CB, CD tại I và J. Gọi H là hình chiếu vuông góc của A lên SC. Xác định K và L lần lượt là giao điểm của SB và SD với mặt (HIJ). Chứng minh AK ⊥ (SBC) ; AL⊥(SCD).c, Tính diện tích tứ giác AKHL