Một đoạn thẳng AB không vuông góc với mặt phẳng \(\left(\alpha\right)\) cắt mặt phẳng này tại trung điểm O của đoạn thẳng đó. Các đường thẳng vuông góc với \(\left(\alpha\right)\) qua A và B lần lượt cắt mặt phẳng \(\left(\alpha\right)\) tại A' và B'. Chứng minh ba điểm A', O, B' thẳng hàng và AA' = BB' ?
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A,AB=a√3 , cạnh bên SA vuông góc với mặt đáy , SA = a√3/2 , M là trung điểm của BC. a. Chứng minh BC vuông góc với (SAM) B. Tính góc giữa đường thẳng SM và mặt phẳng (ABC)
Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD có AB=2a, AD=\(2a\sqrt{3}\) và SA \(\perp\)(ABCD). Gọi M là trung điểm của CD, biết SC tạo với đáy góc 45°. Tính cosin góc tạo bởi đường thẳng SM và mặt phẳng (ABCD) .
Cho tam giác ABC. Gọi \(\left(\alpha\right)\) là mặt phẳng vuông góc với đường thẳng CA tại A và \(\left(\beta\right)\) là mặt phẳng vuông góc với đường thẳng CB tại B. Chứng minh rằng hai mặt phẳng \(\left(\alpha\right)\) và \(\left(\beta\right)\) cắt nhau và giao tuyến d của chúng vuông góc với mặt phẳng (ABC) ?
Cho tứ diện ABCD có DA ⊥ (ABC), tam giác ABC cân tại A với AB=AC=a; BC=\(\dfrac{6a}{5}\). Gọi M là trung điểm của BC, kẻ AH ⊥ MD, với H thuộc MD.
a) Chứng minh rằng AH ⊥ (BCD)
b) Cho AD=\(\dfrac{4a}{5}\) Tính góc giữa hai đường thẳng AC và DM.
c) Gọi G1 ; G2 là trọng tâm các tam giác ABC và DBC. Chứng minh rằng G1G2 ⊥ (ABC).
Cho điểm S không thuộc mặt phẳng \(\left(\alpha\right)\) có hình chiếu trên \(\left(\alpha\right)\) là điểm H. Với điểm M bất kì trên \(\left(\alpha\right)\) và M không trùng với H, ta gọi SM là đường xiên và đoạn HM là hình chiếu của đường xiên đó. Chứng minh rằng :
a) Hai đường xiên bằng nhau khi và chỉ khi hai hình chiếu của chúng bằng nhau
b) Với hai đường xiên cho trước, đường xiên nào lớn hơn thì có hình chiếu lớn hơn và ngược lại đường xiên nào có hình chiếu lớn hơn thì lớn hơn.
Trong không gian cho đường thẳng Δ và điểm O. Qua O có mấy đường thẳng vuông góc với Δ cho trước?
A. 1
B. 2
C. 3
D. Vô số
Bài 1 . Cho tứ diện ABCD , biết AB vuông góc với mặt phẳng ( BCD ) , tam giác BCD vuông tại D , AB = BC = a , góc CBD bằng 30° . a ) CMR : các mặt tứ diện đều là các tam giác vuông . b ) CMR : mp ( BCD ) vuông góc với mp ( ABD ) , mp ( ACD ) vuông góc với mp ( ABD ) . | c ) Tính khoảng cách từ 2 đến mặt phẳng ( ABC ) .
Bài 2 . Cho hình chóp S . ABCD đáy ABCD là hình vuông cạnh a , SA T ( ABCD ) và SA = a . a ) CMR các mặt bên của hình chóp đều là các tam giác vuông . | b ) Gọi M , P lần lượt là hình chiếu của A lên SB , SD . Tìm giao điểm N của SC với mặt phẳng ( APM ) . CMR : SC vuông góc với mặt phẳng ( APM ) , AN vuông góc với MP . c ) Tính diện tích thiết diện tạo bởi mặt phẳng ( APM ) với hình chóp .
Bài 3 . Cho hình chóp S . ABCD đáy ABCD là hình thang vuông tại A và D , AD = DC = a , AB = 2a , mp ( SAB ) vuông góc với ( ABC ) , tam giác SAB đều . a ) Xác định và tính chiều cao của hình chóp . b ) Xác định và tính góc giữa các cạnh bên và mặt đáy của hình chóp . c ) Gọi I là trung điểm của AB . Xác định và tính khoảng cách giữa SA và IC , SD và IC . d ) Xác định và tính diện tích thiết diện tạo bởi mặt phẳng ( P ) đi qua | trung điểm J của BC song song với AB và vuông góc với mp ( ABC ) cắt hình chóp . Bài 4 . Cho hình chóp S . ABC ; SA , SB , SC đối mặt vuông góc , SA = 2 , AC = av3 , BC = 2a . a ) Tính khoảng cách từ S đến mặt phẳng ( ABC ) . b ) Gọi H là hình chiếu vuông góc của S lên mặt phẳng ( ABC ) . CMR : H là trực tâm của tam giác ABC . c ) Xác định và tính góc giữa mặt phẳng ( SBC ) và ( ABC ) . d ) Tính khoảng cách giữa các đường thẳng AC và SB , SC và AB .
Bài 5 . Cho hình vuông ABCD . Gọi S là điểm trong không gian sao cho SAB là tam giác đều và mp ( SAB ) vuông góc với mp ( ABCD ) . a ) CMR : mp ( SAB ) 1 mp ( SAD ) ; mp ( SAB ) 1 mp ( SBC ) . b ) Tính góc giữa hai mặt phẳng ( SAD ) và ( SBC ) . c ) Gọi H và I lần lượt là trung điểm của AB và BC . CMR : mp ( SHC ) 1 mp ( SDI ) .
Bài 6 . Cho tứ diện SABC , hai mặt phẳng ( SAB ) và ( SBC ) vuông góc với nhau và SA 1 mp ( ABC ) , SB = a2 , góc BSC bằng 45° . a ) CMR : BC 1 SB . b ) Tìm điểm cách đều bốn điểm S , A , B , C . a
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB=a, BC=a√3 ; ∆SBC vuông tại B, ∆SCD vuông tại A, SD=a√5a, Chứng minh SA ⊥ (ABCD) và tính SAb, Đường thẳng qua A vuông góc với AC cắt CB, CD tại I và J. Gọi H là hình chiếu vuông góc của A lên SC. Xác định K và L lần lượt là giao điểm của SB và SD với mặt (HIJ). Chứng minh AK ⊥ (SBC) ; AL⊥(SCD).c, Tính diện tích tứ giác AKHL