Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{13}=\dfrac{b}{15}=\dfrac{c}{21}=\dfrac{a+c-2b}{13+21-2\cdot15}=\dfrac{36}{4}=9\)
Do đó: a=117; b=135; c=189
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{13}=\dfrac{b}{15}=\dfrac{c}{21}=\dfrac{a+c-2b}{13+21-2\cdot15}=\dfrac{36}{4}=9\)
Do đó: a=117; b=135; c=189
\(Cho tam giác ABC có ba góc nhọn (AB < AC), M là trung điểm của BC. Trên tia đối tia MA lấy điểm E sao ch a/ Chứng minh: AMB = EMB và AC // BE. b/ Kẻ và . Chứng minh: SA = HE c/ Biết và . Tính số đo và d/ Gọi I là một điểm trên cạnh AC, K là một điểm trên cạnh EB sao cho AI = EK. Chứng minh: Ba điểm I, M, K thẳng hàng\)
cho góc nhọn xOy. Vẽ tia phân giác Oz của góc xOy. Lấy hai điểm M và N lần lượt thuộc tia Ox và tia Oy sao cho OM=ON. Lấy điểm I bất kỳ thuộc tia Oz. Chứng minh rằng A) tam giác OIM = tam giác OIN B) Góc OIM = Góc OIN C) IM = IN
Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó. Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK. Bài 3: Cho ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b) DBC = BDE Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD. Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD BC Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a) ABM = DCM. b) AB // DC. c) AM BC Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB. Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau. Bài 9: Cho tam giác ABC có góc A bằng 900. Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC? Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng. Bài 11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN Bài 12: Cho ∆ABC gọi M, N lần lượt là trung điểm của AC, AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB. Trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh : a) ∆AMD = ∆CMB b) AE // BC c) A là trung điểm của DE Bài 13: Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD. a) Chứng minh: AB = CD b) Chứng minh: BD // AC c) Tính số đo góc ABD Bài 14: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh rằng: a) BE = CD b) ∆BMD = ∆CNE c) AM là tia phân giác của góc BAC Bài 15: Cho ABC cân tại A. Gọi M là trung điểm của cạnh BC. a) Chứng minh : ABM = ACM b) Từ M vẽ MH AB và MK AC. Chứng minh BH = CK c) Từ B vẽ BP AC, BP cắt MH tại I. Chứng minh IBM cân. Bài 16: Cho ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh : a) AB // HK b) AKI cân c) d) AIC = AKC Bài 17: Cho ABC cân tại A ( Â < 90o ), vẽ BD AC và CE AB. Gọi H là giao điểm của BD và CE. a) Chứng minh: ABD = ACE b) Chứng minh AED cân c) Chứng minh AH là đường trung trực của ED d)Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh Bài 18: Cho ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh: a) HB = CK b) c)HK // DE d) AHE = AKD Bài 19: Cho ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) ADE cân b) ABD = ACE Bài 20: Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh: a) BE = CD. b) BMD = CME c) AM là tia phân giác của góc BAC. Bài 21: Cho tam giác ABC (AB < AC) có AM là phân giác của góc A (M thuộc BC).Trên AC lấy D sao cho AD = AB. a) Chứng minh: BM = MD b) Gọi K là giao điểm của AB và DM . Chứng minh: DAK = BAC c) Chứng minh: AKC cân d) So sánh: BM và CM
Cho Ox;On lần lượt là ti phân giác của hai góc zOm và mOy
tìm số đo của xOn?
Cho góc xOy nhọn. Trên tia Ox lấy điểm A và B, trên tia Oy lấy hai điểm C và D sao cho OA = OC, OB = OD. Gọi I là giao điểm của đoạn thẳng AD và đoạn thẳng BC.
a) Chứng minh : IB = ID.
b) Chứng minh : OI là tia phân giác của góc xOy.
cho xoy=70 lấy A thuộc Ox; b thuộc Oy; điểm C nằm trên đoạn AB. Oz;Ot lần lượt là tia đối của tia Ox;c xác định vị trí của C để số đo góc zOt lớn nhất
Biết y và x là hai đại lượng tỉ lệ thuận và khi x = 1/2
thì y = 2; hệ số tỉ lệ k của y đối với x là:
Bài tập 5: Cho tam giác ABC. Gọi D là trung điểm của AC. Trên tia đối của tia DB lấy điểm M sao cho DM = DB.
a. Chứng minh rằng: AB = CM và .
b. Chứng minh rằng AM // BC
c. Chứng minh rằng: ABC = CMA.
d. Gọi I, K lần lượt là trung điểm của AB và CM. Chứng minh ba điểm K, D, I thẳng hàng.
Cho biết hai đại lượng x và y tỉ lệ nghịch với nhau và khi x = -2 thì y = 4. Khi đó hệ số tỉ lệ của y đối với x là: