Bài 1: Định lý Talet trong tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Anh Thơ

Trên phần kéo dài của đường chéo AC của hình thang ABCD (BD // AD) về phái C lấy điểm P tùy ý. Các đường thẳng đi qua P và các trung điểm 2 đáy hình thang cắt các cạnh bên AB, CD tại M, N. Chứng minh rằng:

+, \(\frac{MB}{MA}=\frac{NC}{ND}\)

+, MN // AB // CD

Diệu Huyền
8 tháng 2 2020 lúc 18:02

Sửa đề: Hình thang \(ABCD\left(BC//AD\right)\) Ý 2: \(MN//AD//BC\)

Hình tự vẽ nha <3

Gọi \(E,F\) lần lượt là trung điểm của các cạnh \(BC;AD\)

Gọi \(H\) là giao điểm của \(PE\)\(AD\)\(K\) là giao điểm của \(PK\)\(BC\)

Xét \(\Delta MBE\) có: \(BE//AH\)

\(\Rightarrow\frac{MB}{MA}=\frac{BE}{HA}\)

Lại có: \(\frac{EC}{AH}=\frac{BE}{HA}\Rightarrow\frac{MB}{MA}=\frac{EC}{AH}\)

Chứng minh tương tự ta có: \(\frac{NC}{ND}=\frac{CK}{AF}\)

Xét \(\Delta PAH\) có: \(EC//AH\)

\(\Rightarrow\frac{PC}{PA}=\frac{EC}{AH}\)

Xét \(\Delta PAF\) có: \(CK//AF\)

\(\Rightarrow\frac{PC}{PA}=\frac{CK}{AF}\Rightarrow\frac{MB}{MA}=\frac{NC}{ND}\Rightarrow MN//AD//BC\left(đpcm\right)\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Anh Thơ
Xem chi tiết
Lê Thiên Hương
Xem chi tiết
Lê Thiên Hương
Xem chi tiết
Pha Nguyen
Xem chi tiết
vũ đăng khánh
Xem chi tiết
Đức nUCaO
Xem chi tiết
diệp phương
Xem chi tiết
Trần Vũ Minh Huy
Xem chi tiết
thaonguyen
Xem chi tiết