\(2cos3x\left(2-4sin^2x+1\right)=1\)
\(\Leftrightarrow2cos3x\left(3-4sin^2x\right)=1\)
Nhận thấy \(sinx=0\Leftrightarrow x=k\pi\) không phải nghiệm, nhân 2 vế của pt với \(sinx:\)
\(2cos3x\left(3sinx-4sin^3x\right)=sinx\)
\(\Leftrightarrow2cos3x.sin3x=sinx\)
\(\Leftrightarrow sin6x=sinx\Leftrightarrow\left[{}\begin{matrix}6x=x+k2\pi\\6x=\pi-x+l2\pi\end{matrix}\right.\) (chú ý \(x\ne m.\pi\))
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{7}+\dfrac{l2\pi}{7}\end{matrix}\right.\) ; \(x\ne m.\pi\)
Xét trên \(\left[-4\pi;6\pi\right]\): \(\left\{{}\begin{matrix}-4\pi\le\dfrac{k2\pi}{5}\le6\pi\\-4\pi\le\dfrac{\pi+l2\pi}{7}\le6\pi\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-10\pi\le k\le15\pi\\-13\le l\le20\pi\end{matrix}\right.\)
Vậy tổng các nghiệm:
\(S=\pi\left(\sum\limits^{15}_{k=-10}\dfrac{2k}{5}+\sum\limits^{20}_{l=-13}\dfrac{2l+1}{7}-\sum\limits^6_{m=-4}m\right)=\dfrac{377.\pi}{7}\)