Câu 22)
Bạn dùng nguyên hàm từng phần thôi
Ta có \(I=\int x(1-x)e^{-x}dx=(ax^2+bx+c)e^{-x}\)
Đặt \(\left\{\begin{matrix} u=1-x\\ dv=xe^{-x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=-dx\\ v=\int xe^{-x}dx\end{matrix}\right.\)
Tại $v$ cũng áp dụng nguyên hàm từng phần, suy a \(v=-xe^{-x}-e^{-x}\)
Do đó \(I=(-xe^{-x}-e^{-x})(1-x)-\int (x+1)e^{-x}dx\)
\(I=(x^2-1)e^{-x}-v-\int e^{-x}dx\)
\(I=(x^2-1)e^{-x}-(-xe^{-x}-e^{-x})-(-e^{-x})\)
\(I=e^{-x}(x^2+x+1)+c\)
Do đó \(a=b=c=1\rightarrow a+b+c=3\)
Câu 23:
Câu này y hệt như câu 22. Bạn chỉ cần tìm $a,b,c$ sao cho
\(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(ax^2+bx+c)\sqrt{2x-3}\)
Gợi ý: Đặt \(\sqrt{2x-3}=t\), ta sẽ tìm được \(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(4x^2-2x+1)\sqrt{2x-3}\)
\(\Rightarrow a=4,b=-2,c=1\). Đáp án C
Câu 25:
Đạo hàm của $f(x)=\frac{1}{2x-1}$ thì nghĩa là \(f(x)=\int\frac{1}{2x-1}dx\)
\(\Leftrightarrow f(x)=\frac{1}{2}\int\frac{d(2x-1)}{2x-1}=\frac{1}{2}\ln|2x-1|+c\)
Có \(f(1)=1\leftrightarrow c=1\). Do đó \(f(x)=\frac{1}{2}\ln|2x-1|+1\rightarrow f(5)=\frac{1}{2}\ln 9+1=\ln 3+1\)
Đáp án D
Câu 26)
Có \(F(x)=\int \left ( \frac{4m}{\pi}+\sin^2x\right )dx=\int\frac{4m}{\pi}dx+\int \frac{1-\cos 2x}{2}dx\)
\(F(x)=\frac{4mx}{\pi}+\frac{x}{2}-\frac{\sin 2x}{4}+c\)
\(\left\{\begin{matrix} F(0)=c=1\\ F(\frac{\pi}{4})=m+\frac{\pi}{8}-\frac{1}{4}+c=\frac{\pi}{6}\end{matrix}\right.\Rightarrow m=\frac{\pi}{24}-\frac{3}{4}\)
Câu 27)
\(F(x)=\int\frac{dx}{\sin^2x}=-\cot x+c\)
Vì nó đi qua điểm \(M(\frac{\pi}{6};0)\Rightarrow 0=-\cot(\frac{\pi}{6})+c\rightarrow c=\sqrt{3}\)
\(\Rightarrow F(x)=-\cot x+\sqrt{3}\)