Chứng minh rằng:
\(\dfrac{1}{3\left(\sqrt{2}+1\right)}+\dfrac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}+\dfrac{1}{7\left(\sqrt{4}+\sqrt{3}\right)}+...+\dfrac{1}{4021\left(\sqrt{2011}+\sqrt{2010}\right)}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2011}}\right)\)
1.P= \(\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}-1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right)\):\(\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a) Rút gọn P
b) Tính giá trị của P khi x=\(\dfrac{1}{2}\)\(\left(3+2\sqrt{2}\right)\)
cho bt A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left[\dfrac{2}{x}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right]\)
a)rút gọn bt A
b)tính giá trị của bt A khi\(x=4+2\sqrt{3}\)
c)tìm giá trị của x để bt \(\sqrt{A}\)có giá trị nỏ nhất
tính K=\(\sqrt{4+\sqrt{\left(1-\sqrt{5}\right)^2}}.\left(\sqrt{10}-\sqrt{2}\right)\)
LÀM GIÚP VS Ạ
$1)$ Giải hệ: $\begin{cases} 3x-2\sqrt{y}=1\\ 3y-2\sqrt{z}=1\\ 3z-2\sqrt{x}=1 \end{cases}$
$2)$ Cho $A=\left(\sqrt{3}+\sqrt{2}\right)^{30}+\left(\sqrt{3}-\sqrt{2}\right)^{30}$, tìm chữ số tận cùng của $\left[A\right]$ biết $\left[u\right]$ là số nguyên lớn nhất không vượt quá $u$
Không dùng máy tính so sánh P và Q biết \(P=\dfrac{3+\sqrt{3}}{\sqrt{3}}-\sqrt{\left(\sqrt{3}-1\right)^2}\) và Q=\(\dfrac{1}{\sqrt{2}-1}\)
a) tính A=\(3\sqrt{8}-\sqrt{50}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
b) tìm giá trị của tham số m để hàm số y=(2-m)x+2 đồng biến trên R
c)rút gọn biểu thức P=\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)và tìm các giá trị của x để P>\(\dfrac{1}{2}\)
Cho \(f\left(n\right)=\dfrac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt[]{2n-1}}\) với n nguyên dương. Tính \(f\left(1\right)+f\left(2\right)+...+f\left(40\right)\).
Cho \(x=\dfrac{1}{\sqrt[3]{3-2\sqrt{2}}}+\sqrt[3]{3-2\sqrt{2}}\)
Tính \(P=\left(2x^3-6x+2008\right)^{2020}\)
Giúp với ạ