B= \(\frac{1}{2}-\frac{1}{504}=\frac{251}{504}\)
B= \(\frac{1}{2}-\frac{1}{504}=\frac{251}{504}\)
Bài 1:
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}.\)Chứng minh rằng \(A⋮100\)
\(A=\frac{1}{11}+\frac{1}{12}+\frac{2}{13}+...+\frac{1}{70}.\)Chứng minh rằng \(A>\frac{4}{3}\)
Bài 2:Tính \(\frac{A}{B}\)
\(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\) ;\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{9.10}\) ;\(B=\frac{1}{6.10}+\frac{1}{7.9}+\frac{1}{8.8}+\frac{1}{9.7}+\frac{1}{10.6}\)
giúp mk với các nhà toán thông thái à!
a) Chứng minh rằng:
1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
b) Giải bài toán trên trong trường hợp tổng quát.
Tính tổng :
A = \(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{190}\)
B = \(\frac{12}{84}+\frac{12}{210}+\frac{12}{390}+\frac{12}{2100}\)
1.tính tổng
a. A=\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{20}\right)\)
b. B=\(\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right).....\left(1-\frac{2011}{2010}\right)\)
cho tổng B=\(\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{99^2}+\frac{1}{100^2}\)
chứng tỏ B < 7/4
tính nhanh tổng sau
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
Bài 1:So sánh Avà B biết rằng:
A=\(\frac{10^{15}+1}{10^{16}+1};\) B=\(\frac{10^{16}+1}{10^{17}+1}\)
A=\(\frac{3}{8^3}+\frac{7}{8^4}\); B=\(\frac{7}{8^3}+\frac{3}{8^4}\)
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+.......+\frac{1}{19}+\frac{1}{20};\) B=\(\frac{1}{2}\)
Bài 2:Dạng tính tổng đặc biệt:
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{99\cdot100}\)
\(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+.....+\frac{2}{99\cdot101}\)
\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+......+\frac{3^2}{340}\)
\(D=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+......+\frac{1}{3^8}\)
\(E=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{99}\right)\)
Bài 3:Dạng chứng minh:
\(A=1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}.\)Chứng minh rằng A chia hết cho 100
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\).Chứng minh rằng A>\(\frac{4}{3}\)
Cho A =\(\frac{1}{1.1.3}+\frac{1}{2.3.5}+\frac{1}{3.5.7}+\frac{1}{4.7.9}+...\)
a,Tìm số hạng thứ n
b,So sánh tổng A có 2011 số hạng với \(\frac{2}{3}\)
a) (\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)) . x =\(\frac{1}{3}\)
b) (\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)) : x = \(\frac{2}{3}\)
c) (\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)) . x = \(\frac{2}{3}\)
Mik đang cần gấp