\(A=2^0+2^1+...+2^{2021}\)
\(\Rightarrow2A=2^1+2^2+...+2^{2022}\)
\(\Rightarrow2A-A=2^1+2^2+...+2^{2022}-2^0-2^1-...-2^{2021}=2^{2022}-2^0=2^{2022}-1\)
A = 20 + 21 + ... + 22021
2A = 2(20+21+...+22021)
2A = 21 + 22 + ... + 22022
A = ( 2^1 + 2^2 +...+2^2022 ) - ( 2^0 + 2^1 + ...+2^2021 )
A = ( 2^1 - 2^1 ) + ( 2^2 - 2^2 ) + .... + (2^2021 - 2^2021 ) + 2^2022 - 2^0
A = 0 + 0 +....+0 + 2^2022 - 2^0
A = 2^2022 - 2^0