Trả lời
a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...\dfrac{2}{99.101}\)
=\(2.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\right)\)
=\(2.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
= \(2.\left(\dfrac{1}{1}-\dfrac{1}{101}\right)\)
=\(2.\dfrac{100}{101}\)
=\(\dfrac{200}{101}\)
a/\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\)
=\(\dfrac{2}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
=\(\dfrac{2}{2}.\left(\dfrac{1}{1}-\dfrac{1}{101}\right)\)
=\(\dfrac{2}{2}.\left(\dfrac{101-1}{101}\right)\)
=\(\dfrac{2}{2}.\dfrac{100}{101}\)
=\(\dfrac{100}{101}\)
Bài b mk k bít làm!Chúc bn hc tốt!
A=1.(1-\(\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\))
A=1.(\(1-\dfrac{1}{101}\))
A=1.\(\dfrac{100}{101}\)
A=\(\dfrac{100}{101}\)
a) \(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{101}{101}-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
b) \(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}\left(\dfrac{101}{101}-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}\cdot\dfrac{100}{101}\)
\(=\dfrac{250}{101}\)