a, Ta có: \(\dfrac{1}{3}=\dfrac{1}{1.3};\dfrac{1}{15}=\dfrac{1}{3.5};\dfrac{1}{35}=\dfrac{1}{5.7};...\)
Gọi x là thừa số thứ nhất ở phần mẫu của số hạng thứ 100 \(\left(x\in N;x>0\right)\), ta có:
\(\left(x-1\right):2+1=100\Rightarrow\left(x-1\right):2=99\Rightarrow x-1=198\Rightarrow x=199\)
\(\Rightarrow\) số thứ 100 của dãy trên là \(\dfrac{1}{199.201}\)
Do đó tổng 100 số hạng đầu tiên của dãy trên là:
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{199.201}\)
\(=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{199.201}\right):2\)
\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{199}-\dfrac{1}{201}\right):2\)
\(=\left(1-\dfrac{1}{201}\right):2=\dfrac{200}{201}:2=\dfrac{200}{201}.\dfrac{1}{2}=\dfrac{100}{201}\)
Vậy tổng 100 số hạng đầu tiên của dãy trên là \(\dfrac{100}{201}\)
b, Ta có: \(\dfrac{1}{5}=\dfrac{1}{1.5};\dfrac{1}{45}=\dfrac{1}{5.9};\dfrac{1}{117}=\dfrac{1}{9.13};...\)
Gọi a là thừa số thứ nhất ở phần mẫu của số hạng thứ 100 (\(a\in N\)*), ta có: \(\left(a-1\right):4+1=100\Rightarrow\left(a-1\right):4=99\)
\(\Rightarrow a-1=99.4=396\Rightarrow a=397\)
\(\Rightarrow\) số thứ 100 của dãy trên là \(\dfrac{1}{397.401}\)
Do đó, tổng 100 số hạng đầu tiên của dãy trên là:
\(\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{397.401}=\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{397.401}\right):4\)
\(=\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{397}-\dfrac{1}{401}\right):4\)
\(=\left(1-\dfrac{1}{401}\right):4=\dfrac{400}{401}:4=\dfrac{100}{401}\)
Vậy tổng 100 số hạng đầu tiên của dãy trên là \(\dfrac{100}{401}\)
Gọi dãy số \(\dfrac{1}{5};\dfrac{1}{45};\dfrac{1}{117};\dfrac{1}{221};......\) là B
Dựa theo công thức mình vừa làm bài a ta được :
B = \(\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13.17}+......+\dfrac{1}{397.401}\)
B = \(\dfrac{1}{4}\) . \(\left[\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+.......+\dfrac{4}{391.401}\right]\)
B = \(\dfrac{1}{4}\) . \(\left(1-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}-\dfrac{1}{9}\right)+\left(\dfrac{1}{9}-\dfrac{1}{13}\right)+\left(\dfrac{1}{13}-\dfrac{1}{17}\right)+.........+\left(\dfrac{1}{397}-\dfrac{1}{401}\right)\)
B = \(\dfrac{1}{4}\) . \(\left(1-\dfrac{1}{401}\right)\)
B = \(\dfrac{100}{401}\)
Gọi dãy số \(\dfrac{1}{3}\) ; \(\dfrac{1}{15}\) ; \(\dfrac{1}{35}\) ,..... là S
Ta có : S = \(\dfrac{1}{1.3}\) ; \(\dfrac{1}{3.5}\) ; \(\dfrac{1}{5.7}\) ; ..........
Các số hạng của dãy có dạng \(\dfrac{1}{n\left(n+2\right)}\) với n \(\in\) (N khác 0) , n lẻ
Mà \(\dfrac{1}{n\left(n+2\right)}\) = \(\dfrac{1}{2}\) . \(\dfrac{2}{n\left(n+2\right)}\) = \(\dfrac{1}{2}\) \(\left(\dfrac{1}{n}-\dfrac{1}{n+2}\right)\)
Do đó tổng 100 số hạng đầu tiên của dãy là:
\(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+.........+\dfrac{1}{199.201}\)
= \(\dfrac{1}{2}\) . \(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+......+\dfrac{2}{199.201}\right)\)
= \(\dfrac{1}{2}\) . \(\left(1-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+......+\left(\dfrac{1}{199}-\dfrac{1}{201}\right)\)
= \(\dfrac{1}{2}\) . \(\left(1-\dfrac{1}{201}\right)\)
= \(\dfrac{100}{201}\)