Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cuber Việt

Tính tổng 100 số hạng đầu tiên :

a) 1/3 ; 1/15 ; 1/35 ;...

b) 1/5 ; 1/45 ; 1/117 ; 1/221

Nguyễn Thị Huyền Trang
8 tháng 6 2017 lúc 16:20

a, Ta có: \(\dfrac{1}{3}=\dfrac{1}{1.3};\dfrac{1}{15}=\dfrac{1}{3.5};\dfrac{1}{35}=\dfrac{1}{5.7};...\)

Gọi x là thừa số thứ nhất ở phần mẫu của số hạng thứ 100 \(\left(x\in N;x>0\right)\), ta có:

\(\left(x-1\right):2+1=100\Rightarrow\left(x-1\right):2=99\Rightarrow x-1=198\Rightarrow x=199\)

\(\Rightarrow\) số thứ 100 của dãy trên là \(\dfrac{1}{199.201}\)

Do đó tổng 100 số hạng đầu tiên của dãy trên là:

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{199.201}\)

\(=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{199.201}\right):2\)

\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{199}-\dfrac{1}{201}\right):2\)

\(=\left(1-\dfrac{1}{201}\right):2=\dfrac{200}{201}:2=\dfrac{200}{201}.\dfrac{1}{2}=\dfrac{100}{201}\)

Vậy tổng 100 số hạng đầu tiên của dãy trên là \(\dfrac{100}{201}\)

b, Ta có: \(\dfrac{1}{5}=\dfrac{1}{1.5};\dfrac{1}{45}=\dfrac{1}{5.9};\dfrac{1}{117}=\dfrac{1}{9.13};...\)

Gọi a là thừa số thứ nhất ở phần mẫu của số hạng thứ 100 (\(a\in N\)*), ta có: \(\left(a-1\right):4+1=100\Rightarrow\left(a-1\right):4=99\)

\(\Rightarrow a-1=99.4=396\Rightarrow a=397\)

\(\Rightarrow\) số thứ 100 của dãy trên là \(\dfrac{1}{397.401}\)

Do đó, tổng 100 số hạng đầu tiên của dãy trên là:

\(\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{397.401}=\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{397.401}\right):4\)

\(=\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{397}-\dfrac{1}{401}\right):4\)

\(=\left(1-\dfrac{1}{401}\right):4=\dfrac{400}{401}:4=\dfrac{100}{401}\)

Vậy tổng 100 số hạng đầu tiên của dãy trên là \(\dfrac{100}{401}\)

DƯƠNG PHAN KHÁNH DƯƠNG
8 tháng 6 2017 lúc 16:27

Gọi dãy số \(\dfrac{1}{5};\dfrac{1}{45};\dfrac{1}{117};\dfrac{1}{221};......\) là B

Dựa theo công thức mình vừa làm bài a ta được :

B = \(\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13.17}+......+\dfrac{1}{397.401}\)

B = \(\dfrac{1}{4}\) . \(\left[\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+.......+\dfrac{4}{391.401}\right]\)

B = \(\dfrac{1}{4}\) . \(\left(1-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}-\dfrac{1}{9}\right)+\left(\dfrac{1}{9}-\dfrac{1}{13}\right)+\left(\dfrac{1}{13}-\dfrac{1}{17}\right)+.........+\left(\dfrac{1}{397}-\dfrac{1}{401}\right)\)

B = \(\dfrac{1}{4}\) . \(\left(1-\dfrac{1}{401}\right)\)

B = \(\dfrac{100}{401}\)

DƯƠNG PHAN KHÁNH DƯƠNG
8 tháng 6 2017 lúc 16:11

Gọi dãy số \(\dfrac{1}{3}\) ; \(\dfrac{1}{15}\) ; \(\dfrac{1}{35}\) ,..... là S

Ta có : S = \(\dfrac{1}{1.3}\) ; \(\dfrac{1}{3.5}\) ; \(\dfrac{1}{5.7}\) ; ..........

Các số hạng của dãy có dạng \(\dfrac{1}{n\left(n+2\right)}\) với n \(\in\) (N khác 0) , n lẻ

\(\dfrac{1}{n\left(n+2\right)}\) = \(\dfrac{1}{2}\) . \(\dfrac{2}{n\left(n+2\right)}\) = \(\dfrac{1}{2}\) \(\left(\dfrac{1}{n}-\dfrac{1}{n+2}\right)\)

Do đó tổng 100 số hạng đầu tiên của dãy là:

\(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+.........+\dfrac{1}{199.201}\)

= \(\dfrac{1}{2}\) . \(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+......+\dfrac{2}{199.201}\right)\)

= \(\dfrac{1}{2}\) . \(\left(1-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+......+\left(\dfrac{1}{199}-\dfrac{1}{201}\right)\)

= \(\dfrac{1}{2}\) . \(\left(1-\dfrac{1}{201}\right)\)

= \(\dfrac{100}{201}\)


Các câu hỏi tương tự
Nguyễn Hương Giang
Xem chi tiết
Hoàng Quốc Huy
Xem chi tiết
Hoàng Quốc Huy
Xem chi tiết
Nghia Manh
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Tattoo mà ST vẽ lên thôi
Xem chi tiết
Yên Lê Thanh
Xem chi tiết
Như Yến
Xem chi tiết
☘-P❣N❣T-❀Huyền❀-☘
Xem chi tiết