Tính tích phân : \(I=\int\limits^1_0\left(x-e^{2x}\right)xdx\)
1) Cho hàm số f(x) liên tục trên R+ thỏa mãn f '(x) \(\ge x+\dfrac{1}{x},\forall x\in R^+\) và f(1) = 1. CM : \(f\left(2\right)\ge\dfrac{5}{2}+ln2\).
2) Cho hàm số y = f(x) > 0 xác định, có đạo hàm trên đoạn [0; 1] và thỏa mãn : \(g\left(x\right)=1+2018\int\limits^x_0f\left(t\right)dt\) , g(x) = f2 (x). Tính \(\int\limits^1_0\sqrt{g\left(x\right)}dx\).
3) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0; 1] thỏa mãn f(1) = 1; \(\int\limits^1_0\left[f'\left(x\right)\right]^2dx=9\) và \(\int\limits^1_0x^3f\left(x\right)dx=\dfrac{1}{2}\). Tính tích phân \(\int\limits^1_0f\left(x\right)dx\).
Tính tích phân :
\(I=\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{3}}\frac{\ln\left(4\tan x\right)}{\sin2x.\ln\left(2\tan x\right)}dx\)
Tính tích phân sau :
\(\int\limits^2_1\frac{\ln\left(x+1\right)}{x^2}\)
Tính các tích phân:
a) \(\int\limits^1_0\)\(\dfrac{xe^x+1+x}{e^x+1}\)dx
b)\(\int\limits^{\dfrac{\pi}{2}}_0\)\(\dfrac{1-\sin\left(x\right)}{1+\cos\left(x\right)}\)dx
c)\(\int\limits^2_1\)\(\dfrac{\left(x-1\right)ln\left(x\right)}{x^2}\)dx
d)\(\int\limits^e_1\)ln( x + 1)dx
Tính tích phân :
\(\int\limits^3_1\frac{3+\ln x}{\left(x+1\right)^2}dx\)
Tính tích phân :
\(\int^1_0\left(\frac{x^2-4x+3}{e^{2x}}\right)dx\)
Tính tích phân sau :
\(I=\int\limits^5_1\left(\frac{x}{\sqrt{x-1}+1}+\frac{\ln x}{\left(x+1\right)^2}\right)dx\)
Tính tích phân: \(\int\limits^{log\left(1+\sqrt{2}\right)}_0\left(\dfrac{e^x-e^{-x}}{2}\right)^3\cdot\left(\dfrac{e^x+e^{-x}}{2}\right)^{11}dx\)