Rút gọn các biểu thức sau:
1) \(\frac{1}{\sqrt{7-\sqrt{24}+1}}-\frac{1}{\sqrt{7+\sqrt{24}}}\)
2) \(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}-1}+1}\)
3) \(\sqrt{\frac{5+2\sqrt{6}}{5-\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+\sqrt{6}}}\)
4) \(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\)
Chứng minh
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{97\left(\sqrt{48}+\sqrt{49}\right)}< \frac{3}{7}\)
1. Tính gt của bt:
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{24}+\sqrt{25}}\)
2. Tính tổng \(S=\sqrt{1+\left(1+\frac{1}{3}\right)^2}+\sqrt{1+\left(\frac{1}{2}+\frac{1}{4}\right)^2}+\sqrt{1+\left(\frac{1}{3}+\frac{1}{5}\right)^2}+...+\sqrt{1+\left(\frac{1}{2014}+\frac{1}{2016}\right)^2}\)
Rút gọn
a, \(\frac{2\sqrt{3-1}}{\sqrt{15}}-\frac{2-\sqrt{5}}{\sqrt{3}}-\frac{4\sqrt{15}-10\sqrt{3}}{15}\)
b, \(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a-1}}+\frac{\sqrt{a-1}}{\sqrt{a}+1}\right)\)
c, \(\sqrt{4+\sqrt{7}-\sqrt{4-\sqrt{7}}}\)
d, \(6+2\sqrt{2}.3-\sqrt{4+\sqrt{2\sqrt{3}}}\)
e, \(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
Help me !!!
Thực hiện phép tính:
a)\(\frac{5}{a-\sqrt{11}}+\frac{1}{3\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\)
b)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
c)\(\left(\frac{9-2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2-\left(\frac{9+2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2\)
Rút gọn biểu thức sau :
a)\(\frac{2}{\sqrt{7}-5}-\frac{2}{\sqrt{7}+5}\)
b)\(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
c)\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right)\frac{1}{\sqrt{7}-\sqrt{5}}\)
d)\(\frac{3}{\sqrt{5}-2}+\frac{2}{\sqrt{5}+3}-\frac{1}{\sqrt{5}+4}\)
giúp mình với ạ
Thực hiện phép tính:
a) \(\left(\frac{1}{7-4\sqrt{3}}+\frac{3}{7+4\sqrt{3}}\right)\left(7+2\sqrt{3}\right)\)
b)\(\left(\frac{3\sqrt{5}-\sqrt{15}}{\sqrt{27}-3}+\frac{2\sqrt{5}}{\sqrt{3}}\right).4\sqrt{15}\)
c)\(\sqrt{5-2\sqrt{6-25-\sqrt{96}}}\)
d)\(\sqrt{23-2\sqrt{112}}+\sqrt{23+2\sqrt{112}}\)
Tính
\(A=\frac{3}{\sqrt{3}}+\frac{2\sqrt{3}}{\sqrt{3}+1}\) \(B=\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\frac{1}{2-\sqrt{3}}\)
\(C=\frac{5+2\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}}-\left(\sqrt{5}+\sqrt{3}\right)\)
\(D=\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\) \(E=\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}-\frac{2-\sqrt{2}}{\sqrt{2}-1}\)
3. a.\(\sqrt{\left(4-\sqrt{17}\right)^2}\)
b.\(\frac{2\sqrt{3}}{2}\)
c \(\frac{\sqrt{6}+\sqrt{14}}{\text{2√3+√28}}\)
d.\(\frac{x+1}{\sqrt{x^2-1}}\)
e.\(\frac{x^2-5}{x+\sqrt{5}}\)
f.\(\frac{2}{2-\sqrt{3}}\)
g.\(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
f.\(\frac{x\sqrt{x}-1}{\sqrt{x}-1}\)
i.\(\frac{3}{\sqrt{20}}+\frac{1}{\sqrt{60}}-2\sqrt{\frac{1}{15}}\)
k.\(\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{6}+\sqrt{2}}\)
i.(\(\frac{1}{\sqrt{5}-\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{3}}\))\(\sqrt{5}\)
h.\(\left(\sqrt{20}-\sqrt{45}+\sqrt{5}\right)\sqrt{5}\)
l.\(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
m.\(\frac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{\frac{4}{3}}\)
n.\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\right):2\sqrt{5}\)
d\(\left(2+\sqrt{5}\right)^2-\left(2+\sqrt{5}\right)^2\)