Cho 3 số dương a,b,c theo thứ tự lập thành csc. Giá trị lớn nhất của biểu thức P = \(\dfrac{\sqrt{a^2+8bc}+3}{\sqrt{\left(2a+c\right)^2+1}}\) có dạng \(x\sqrt{y}\left(x,y\in N\right)\) Hỏi x + y = ?
Cho ba số dương a,b,c theo thứ tự lập thành cấp số cộng. Giá trị lớn nhất của biểu thức \(P=\dfrac{\sqrt{a^2+8bc}+3}{\sqrt{\left(2a+c\right)^2+1}}\) có dạng \(x\sqrt{y}\) (x,y thuộc N). Hỏi x+y bằng bao nhiêu?
Chứng minh rằng dãy số \(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_{n+1}=\sqrt{u_n+2}\end{matrix}\right.\) tăng và bị chặn trên bởi 2
Bài 1: Cho dãy (Un): \(\left\{{}\begin{matrix}U_1=1\\U_{n+1}=2U_n+3\end{matrix}\right.\)
a) Tìm: U5
b) Tìm số hạng tổng quát của dãy (Un)
Bài 2: Xét tính tăng, giảm
a) \(U_n=\dfrac{\sqrt{n+1}-\sqrt{n}}{n}\)
b) \(\left(U_n\right):\left\{{}\begin{matrix}U_n=3\\U_{n+1}=\sqrt{1+U_n^2}\end{matrix}\right.\)
Bài 3: Tìm a để (Un): \(U_n=\dfrac{an+2}{n+1}\) là dãy tăng
Bài 4: Xét tính bị chặn:
a) \(U_n=\dfrac{n^2+1}{2n^2-3}\)
b) \(U_n=\dfrac{n-1}{\sqrt{n^2+1}}\)
Bài 5: Cho dãy: \(\left\{{}\begin{matrix}U_1=\sqrt{2}\\U_n+1=\sqrt{U_n+2}\end{matrix}\right.\), (Un)
Chứng minh rằng: (U1) tăng, bị chặn trên bởi 2
Xét tính tăng , giảm của các dãy số \(\left(u_n\right)\) biết :
\(a,u_n=\dfrac{\left(-1\right)^n}{n+2}\)
\(b,u_n=\sqrt{n+3}-\sqrt{n}\)
Xét tính tăng , giảm của các dãy số \(\left(u_n\right)\) biết :
\(a,u_n=\dfrac{\left(-1\right)^n}{n+2}\)
\(b,u_n=\sqrt{n+3}-\sqrt{n}\)
cho dãy số (un) xác định bởi \(\left\{{}\begin{matrix}u_1=\sqrt{3}\\u_{n+1}=\frac{u_n+\sqrt{2}-1}{1+\left(1-\sqrt{2}\right)u_n},n=1,2,3,....\end{matrix}\right.\). Tính u2018
tim M=lim(x\(\rightarrow\)0)\(\dfrac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{x^2}\)
Cho dãy số (Un): \(\left\{{}\begin{matrix}u_1=1,u_2=2\\u_{n+2}=-\sqrt{2}.u_{n+1}-u_n\end{matrix}\right.\). Hãy xác định số hạng tổng quát của dãy (Un)