S = C₀₂₀₂₄ + 12.C₂₀₂₄ + 13.C₂₀₂₄ + 14.C₂₀₂₄ + ... + 11013.C₂₀₂₄
= (C₀₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + (C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + ... + (C₂₀₂₄)
= 11014.C₂₀₂₄
= 11014.
S = C₀₂₀₂₄ + 12.C₂₀₂₄ + 13.C₂₀₂₄ + 14.C₂₀₂₄ + ... + 11013.C₂₀₂₄
= (C₀₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + (C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + ... + (C₂₀₂₄)
= 11014.C₂₀₂₄
= 11014.
Tính: \(S=C^0_{2024}+\dfrac{1}{2}.C^2_{2024}+\dfrac{1}{3}.C^4_{2024}+\dfrac{1}{4}.C^6_{2024}+...+\dfrac{1}{1013}.C^{2024}_{2024}\)
Tính: \(S=C^0_{2024}+\dfrac{1}{2}.C^2_{2024}+\dfrac{1}{3}.C^4_{2024}+\dfrac{1}{4}.C^6_{2024}+...+\dfrac{1}{1013}.C^{2024}_{2024}\)
Tính: \(S=C^0_{2024}+\dfrac{1}{2}.C^2_{2024}+\dfrac{1}{3}.C^4_{2024}+\dfrac{1}{4}.C^6_{2024}+...+\dfrac{1}{1013}.C^{2024}_{2024}\)
Tính: \(S=C^0_{2024}+\dfrac{1}{2}.C^2_{2024}+\dfrac{1}{3}.C^4_{2024}+\dfrac{1}{4}.C^6_{2024}+...+\dfrac{1}{1013}.C^{2024}_{2024}\)
Tính: \(S=C^0_{2024}+\dfrac{1}{2}.C^2_{2024}+\dfrac{1}{3}.C^4_{2024}+\dfrac{1}{4}.C^6_{2024}+...+\dfrac{1}{1013}.C^{2024}_{2024}\)
Tính: \(S=C^0_{2024}+\dfrac{1}{2}.C^2_{2024}+\dfrac{1}{3}.C^4_{2024}+\dfrac{1}{4}.C^6_{2024}+...+\dfrac{1}{1013}.C^{2024}_{2024}\)
Rút gọn: \(S=C^0_{2n} +3^2C^2_{2n}+3^4C^4_{2n}+...+3^{2n}C^{2n}_{2n}\)
Tính tổng: \(S=n\left(C^0_{n-1}+C^1_{n-1}+C^2_{n-1}+...+C^{n-1}_{n-1}\right)\)
Tìm số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x^2}\right)^n\) ( với x khác 0) biết:
\(2A^2_n=C^2_{n-1}+C^3_{n-1}\)