\(A=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)\left(\frac{1}{125}-\frac{1}{3^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\\ A=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)\left(\frac{1}{125}-\frac{1}{3^3}\right)\left(\frac{1}{125}-\frac{1}{4^3}\right)\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\\ A=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)\left(\frac{1}{125}-\frac{1}{3^3}\right)\left(\frac{1}{125}-\frac{1}{4^3}\right)\left(\frac{1}{125}-\frac{1}{125}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\\ A=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)\left(\frac{1}{125}-\frac{1}{3^3}\right)\left(\frac{1}{125}-\frac{1}{4^3}\right)\cdot0\cdot...\left(\frac{1}{125}-\frac{1}{25^3}\right)\\ A=0\)