A=4x2+x
=4x2+2.\(\dfrac{1}{2}\) .x +\(\dfrac{1}{4}\) -\(\dfrac{1}{4}\)
=\(\left(4x^2+2.\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{1}{4}\)
=\(\left(2x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
Do \(\left(2x+\dfrac{1}{2}\right)^2\ge0\forall x\)
=>\(\left(2x+\dfrac{1}{2}\right)+\dfrac{1}{4}\ge\dfrac{1}{4}\)
=>A\(\ge\dfrac{1}{4}\)
=> GTNN của A=\(\dfrac{1}{4}\) khi
\(2x+\dfrac{1}{2}=0\)
=>2x=\(\dfrac{1}{2}\)
x=\(\dfrac{1}{4}\)
Vậy GTNN của A =\(\dfrac{1}{4}\) khi x=\(\dfrac{1}{4}\)