Ta có: \(x^2-y^2=60\) và \(x+y=4\)
\(\Rightarrow\left(x+y\right).\left(x-y\right)=60\) mà \(x+y=4\)
\(\Rightarrow4.\left(x-y\right)=60\)
\(\Rightarrow x-y=60:4=15\)
Vậy: \(x-y=15\)
Ta có: \(x^2-y^2=60\) và \(x+y=4\)
\(\Rightarrow\left(x+y\right).\left(x-y\right)=60\) mà \(x+y=4\)
\(\Rightarrow4.\left(x-y\right)=60\)
\(\Rightarrow x-y=60:4=15\)
Vậy: \(x-y=15\)
Tính giá trị của biểu thức \(A=\dfrac{x-y}{x+y}\), biết: \(x^2-2y^2=xy\) (y\(\ne0\); \(x+y\ne0\))
Cho 3x-y=3z và 2x+y=7z. Tính giá trị của biểu thức: \(M=\dfrac{x^2-2xy}{x^2+y^2}\left(x\ne0,y\ne0\right)\)
Cho: \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\). Tính giá trị của biểu thức: \(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}\)
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
C1: Với x-y=1, giá trị của biểu thức x^3-y^3-3xy=
C2: Với x+y=3 và x^2+y^2=5. Khi đó x^3+y^3=
Tính giá trị của biểu thức: \(M=\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\), biết rằng 2a=by+cz, 2b=ax+cz, 2c=ax+by và \(a+b+c\ne0\)
Tính giá trị của biểu thức: \(M=\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\), biết rằng 2a=by+cz, 2b=ax+cz, 2c=ax+by và \(a+b+c\ne0\)
Cho 3y-x=6. Tính giá trị của biểu thức: \(A=\dfrac{x}{y-2}+\dfrac{2x-3y}{x-6}\)