Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Yui Arayaki

Tính giá trị của biểu thức:
A= x^5 – 20x^4 + 21x^3 -39x^2 +18x tại x = 19

Phạm Đình Tâm
10 tháng 11 2017 lúc 22:45

\(x=19\) nên \(x-19=0\)

Ta có: A = \(x^5-20x^4+21x^3-39x^2+18x\)

= \(x^5-19x^4-x^4+19x^3+2x^3-38x^2-x^2+19x-x\)

= \(x^4\left(x-19\right)-x^3\left(x-19\right)+2x^2\left(x-19\right)-x\left(x-19\right)-x\)

= \(-x=-19\)

Bài này bạn có thể làm theo cách khác chẳng hạn bạn áp dụng đ/lí Bê-du rồi lập sơ đồ Hooc-ne để tính


Các câu hỏi tương tự
dam quoc phú
Xem chi tiết
dam quoc phú
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Đặng Ngọc Hà
Xem chi tiết
Erza Scarlet
Xem chi tiết
Quý Thiện Nguyễn
Xem chi tiết
nguyen ha giang
Xem chi tiết
Trí Kiên
Xem chi tiết