Ta có: \(S=\dfrac{105}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+105}\)
\(=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{a}{a\left(b+1+bc\right)}\)
\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{bc+b+1}\)
\(=\dfrac{bc+b+1}{bc+b+1}=1\)
Vậy S = 1
Thay \(abc=105\) ta có:
\(S=\dfrac{abc}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(\Rightarrow S=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(\Rightarrow S=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{b+1+bc}\)
\(\Rightarrow S=\dfrac{bc+b+1}{bc+b+1}=1\)
Vậy \(S=1\)