Ta có:
\(\dfrac{a}{a+b+c}< \dfrac{a+d}{a+b+c+d};\dfrac{b}{a+b+d}< \dfrac{b+c}{a+b+c+d}\)
\(\dfrac{c}{b+c+d}< \dfrac{c+a}{a+b+c+d};\dfrac{d}{a+c+d}< \dfrac{b+d}{a+b+c+d}\)
Cộng theo vế các BĐT trên ta có:
\(P< \dfrac{a+d}{a+b+c+d}+\dfrac{b+c}{a+b+c+d}+\dfrac{c+a}{a+b+c+d}+\dfrac{b+d}{a+b+c+d}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\left(1\right)\)
Lại có:
\(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d};\dfrac{b}{a+b+d}>\dfrac{b}{a+b+c+d}\)
\(\dfrac{c}{b+c+d}>\dfrac{c}{a+b+c+d};\dfrac{d}{a+c+d}>\dfrac{d}{a+b+c+d}\)
Cộng theo vế các BĐT trên có:
\(P>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=\dfrac{a+b+c+d}{a+b+c+d}=1\left(2\right)\)
Từ \((1);(2)\) ta thu được ĐPCM