Thay 2009 = x + 1 vào D, ta có:
\(D=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+....+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)\(\Leftrightarrow D=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+....+x^3+x^2-x^2-x+x+1\)\(\Leftrightarrow D=1\)