Tính giá trị của biểu thức: \(M=\dfrac{1+ab}{a+b}-\dfrac{1-ab}{a-b}\) với \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\); \(a=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
Cho biểu thức: \(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\). Tính giá trị của A tại x=\(\sqrt{2}\)
Tính giá trị của biểu thức: \(M=\dfrac{1+ab}{a+b}-\dfrac{1-ab}{a-b}\) với \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
Dạng 1: Tính giá trị biểu thức [Rút gọn biểu thức rồi thay số (nếu đc)]
1) Tính giá trị biểu thức B = \(\sqrt{x-1+2\sqrt[3]{x\sqrt{x}+3x+3\sqrt{x}+1}}\), vs x = 5
2) Tính giá trị biểu thức C = \(\sqrt{2x-1+2\sqrt{x^2-x}+\sqrt{2x-1-2\sqrt{x^2-x}}}\), vs x = 4
3) Tính giá trị biểu thức D = \(\frac{\sqrt[3]{x\sqrt{x}\left(3x+1\right)+x^2\left(3+x\right)}}{\sqrt{x}+1}-\sqrt{x}\), vs x = 10
4) Tính giá trị biểu thức E = \(\sqrt{\sqrt[4]{x}+1-2\sqrt[8]{x}+1}\), vs x = 256
5) Cho x = \(\frac{\left(\sqrt{5}+2\right)\sqrt{3\sqrt{5}-6}}{\sqrt{4+\sqrt{9-4\sqrt{5}}}}\), tính giá trị biểu thức A = \(\left(x^4-5x^2+5\right)^{2014}\)
cho biểu thức
Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a. rút gọn biểu thức Q
b.tìm số nguyên x để Q có giá trị nguyên
Cho \(x=\dfrac{\sqrt[3]{26+15\sqrt{3}}.\left(2-\sqrt{3}\right)}{\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}}\). Tính giá trị của biểu thức: \(M=\left(3x^3-x^2-1\right)^{2021}\)
1.cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) với x>0,x\(\ne4\)
a.rút gọn biểu thức M
b.tính giá trị của M khi x=3+2\(\sqrt{2}\)
c.tìm giá trị của x để M>0
1, tính giá trị của biểu thức A=\(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
Tính giá trị của biểu thức \(P=x^3+y^3-3\left(x+y\right)+2009\)
trong đó: \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
\(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)