Tính
\(\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
cho A= \(\frac{1}{1.2^2}+\frac{1}{2.3^2}+\frac{1}{3.4^2}+...+\frac{1}{49.50^2}\)
B= \(\frac{1}{2^{ }}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
Chứng minh : A < \(\frac{1}{2}\)<B
Rút gọn:
a/ \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2000}\)
b/ \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{1998.1999.2000}\)
c/ \(C=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2006.2008}\)
chứng minh rằng:
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
mình ngu toán chúng minh (hép mi)
CMR:\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{19}{\left(9.10\right)^2}< 1\)
Tinh giá trị cuả biểu thức sau
7m+2n-6 ta.i m=1,n=2
1/ Tính : \(\frac{-8}{5}+\frac{207207}{201201}\)
2/ Tính:
\(M=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}}{\frac{2001}{1}+\frac{2002}{2}+\frac{1999}{3}+...+\frac{1}{2001}}\)
Cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn a+b/c = b+c/a = c+a/b
Tính giá trị biểu thức M = ( 1+a/b)(1+b/c)(1+a/c)
\(\frac{1}{2}\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)...........\left(1+\frac{1}{n\left(n+2\right)}\right)=\frac{2013}{2014}\)
Tìm n , n thuộc N