Bài 1: Tính:
\(a,\left(0,25\right)^3.32\) \(b,\left(0,125\right)^3.512\) \(c,\dfrac{8^2.4^5}{2^{20}}\) \(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}\)
Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau:
\(a,A=\left|x-\dfrac{3}{4}\right|\) \(b,B=1,5+\left|2-x\right|\) \(c,A=\left|2x-\dfrac{1}{3}\right|+107\) \(d,M=5\left|1-4x\right|-1\)
Bài 3: Tìm giá trị lớn nhất của biểu thức sau:
\(a,C=-\left|x-2\right|\) \(b,D=1-\left|2x-3\right|\) \(c,D=-\left|x+\dfrac{5}{2}\right|\)
(mn giải giúp mk với, thanks mn nhìu!)
Tính giá trị của các biểu thức sau:
a, A= \(\dfrac{3b+28}{3a-5}-\dfrac{38-3a}{5-3b}\) với a - b =11, và a \(\ne\) \(\dfrac{5}{3},b\) \(\ne\dfrac{5}{3}\)
b, B= \(\dfrac{\left(x-y\right).\left(x^2-y^2\right).\left(x^3.y^3\right)}{x^4-y^4}\) với x=1; y= 0,1
c, C = \(\dfrac{0,25.x^2-4.y^2}{3.x^2+7.y}+\dfrac{6.x^2y}{5.x-2.y}\) với \(\dfrac{x}{y}=-4\)
cho \(\dfrac{a}{b}=\dfrac{-2}{3}\)tính giá trị của biểu thức M=\(\dfrac{5a+2b}{3a-4b}\)
cho dãy tỉ số bằng nhau\(\dfrac{2a+b+c+d}{a}\) =\(\dfrac{a+2b+c+d}{b}\) =\(\dfrac{a+b+2c+d}{c}\)=\(\dfrac{a+b+c+2d}{d}\)
tính giá trị của biểu thức M= \(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)
Bài 1: a) Cho \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)...\left(\dfrac{1}{2015}-1\right)\left(\dfrac{1}{2016}-1\right)\). So sánh A với \(\dfrac{-1}{2015}\)
b) Cho biểu thức \(A=\dfrac{3x^3-x^2-3x+2015}{3x^4-x^3+3x+2014}\). Tính giá trị của biểu thức với x=\(\dfrac{1}{3}\)
các tỉ số sau đây có lập thành tỉ lệ thức không? vì sao?
a,\(\dfrac{15}{21}\) và \(\dfrac{30}{42}\) b, 0,25 : 1,25 và \(\dfrac{1}{7}\) c, 0,4 : \(1\dfrac{2}{5}\) và \(\dfrac{3}{5}\)
d,\(\dfrac{3}{5}\):\(\dfrac{1}{7}\) và 21 :\(\dfrac{1}{5}\) e, \(4\dfrac{1}{2}:7\dfrac{1}{2}\) và 2,7 : 4,7 f, \(\dfrac{1}{4}:\dfrac{1}{9}\) và \(\dfrac{1}{2}:\dfrac{2}{9}\)
g,\(\dfrac{2}{7}:\dfrac{4}{11}\) và \(\dfrac{7}{2}:\dfrac{4}{11}\) h,\(\dfrac{2}{5}:\dfrac{10}{2}\) và \(\dfrac{2}{1}:\dfrac{1}{4}\) i, \(\dfrac{2}{7}:\dfrac{7}{4}\) và \(\dfrac{16}{49}\): 2
Cho 3 tỉ số bằng nhau là : \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) . Tính giả trị mỗi biểu thức
Cho a, b, c >0 và dãy tỉ số \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính giá trị của biểu thức P=\(\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
1) Chứng minh rằng \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\)
2) Cho a,b,c là ba số thực khác 0, thỏa mãn điều kiện
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Hãy tính gt biểu thức \(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
3) Tìm 1 nghiệm của đa thức P(x) = \(x^3+ax^2+bx+c\)
Biết rằng đa thức có nghiệm và a + 2b + 4c = \(\dfrac{-1}{2}\)