1 ) Nếu \(x=9\Rightarrow10=x+1\)
Thay \(10=x+1\) vào B , ta được :
\(B=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(\Leftrightarrow B=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(\Leftrightarrow B=1\)
2 ) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left(x^2+ax+bx+ab\right)\left(x+c\right)\)
\(=x^3+ax^2+bx^2+abx+x^2c+axc+bxc+abc\)
\(=x^3+\left(ax^2+bx^2+cx^2\right)+\left(abx+axc+bcx\right)+abc\)
\(=x^3+\left(a+b+c\right)x^2+x\left(ab+ac+bc\right)+abc\)
\(\left(đpcm\right)\)
:D