a, Đặt \(x=\frac{1}{117}\), \(y=\frac{1}{119}\) ta có:
\(A=\left(3+x\right)y-4x\left(5+1-y\right)-5xy+24x\)
\(=3y+xy-24x+4xy-5xy+24x\)
\(=3y\)
\(=\frac{3}{119}\)
b, Thay 8 bằng x + 1 ta có:\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-5\)
\(=7-5\)
= 2
a) Đặt a = \(\frac{1}{117}\)và b = \(\frac{1}{119}\)
Theo đề ta có:
A = (3 + a) b - 4a ( 5+1-b)-5ab+24a
= 3b + ab - 20a -4a + 4ab - 5ab + 24a
= 3b
= 1.\(\frac{1}{119}\) = \(\frac{3}{119}\)
Vậy A = \(\frac{3}{119}\)