\(A=\dfrac{6x^2+8x+7+x^2-x-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
Để 4A=x-1 thì \(\dfrac{4}{x-1}=x-1\)
=>x-1=2 hoặc x-1=-2
=>x=3(loại) hoặc x=-1(nhận)
\(A=\dfrac{6x^2+8x+7+x^2-x-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
Để 4A=x-1 thì \(\dfrac{4}{x-1}=x-1\)
=>x-1=2 hoặc x-1=-2
=>x=3(loại) hoặc x=-1(nhận)
cho biểu thức: A=(\(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\)) : \(\frac{x+1}{x-2}\)
a) Tìm điều kiện xác định của biểu thức A
b) Rút gọn biểu thức A
c) Tính giá trị của biểu thức A khi x = -1
d) Tìm các giá trị nguyên của x để A có giá trị nguyên
Cho biểu thức
\(P=\frac{\left(\frac{x}{x+2}-\frac{x^3-8}{x^3+8}\cdot\frac{x^2-2x+4}{x^2-4}\right)}{\frac{1}{x+2}\cdot\frac{x^3+3x+2}{x^2+x+1}}\) (với \(x\ne2;x\ne-2\))
a) Rút gọn biểu thức P
b) Tìm các giá trị của x để P>0
Tìm giá trị của x để biểu thức : \(P=\frac{x^2+x+1}{x^2+2x+1}\left(x\ne-1\right)\) đạt GTNN
Chứng minh đẳng thức:
a.\(\frac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}=\frac{a+1}{a+2}\)
b.\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{\left(x+1\right)^2}{x^2+1}\)
cho x,y thỏa mãn đẳng thức 5x^2+5y^2+8xy-2x+2y+2=0
Tính giá trị biểu thức M=(x+y)^2015+(x-2)^2016+(y+1)^2017
cho biểu thức A=\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
tìm x để A= -3/4
b) tìm x để biểu thức A có giá tị nguyên
cho biểu thức\(p=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}_{ }\) a rút gọn p b tìm giá trị nhỏ nhất của p
cho biểu thức:
A=\(\frac{2}{x+1}\)+\(\frac{6}{x^{2-2}}\)+\(\frac{3}{2-x}\)
a, rút gọn biểu thức
b,tìm giá trị x để A nguyên
1. Cho biểu thức :
A = \(\left(\frac{x-2}{2x-2}+\frac{3}{2x-2}-\frac{x+3}{2x+2}\right)\div\left(1-\frac{x-3}{x-y}\right)\)
a) Tìm điều kiện của x để giá trị của biểu thức được xác định .
b) Tính giá trị của biểu thức với x = 2005 .
c) Tìm giá trị của x để biểu thức A có giá trị bằng -1002 .