Ta có: \(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\) \(=\frac{2^{40}.2^{20}+2^{40}}{2^{30}.2^{20}+2^{30}}=\frac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}\)\(=\frac{2^{40}}{2^{30}}=2^{10}=1024\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=2^{10}=1024\)