Tính:
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2017}\)
P/s:Hãy chỉ ra quy luật của từng số hạng trong tổng trên
Tính:
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2017}\)
P/s:Hãy chỉ ra quy luật của từng số hạng trong tổng trên
giải pt
1,\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
2,\(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
3,\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x\left(1-\frac{x-1}{x+1}\right)\)
4,\(\frac{2x}{x-1}+\frac{4}{x^2+2x-3=}=\frac{2x-5}{x+3}\)
5,\(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{x^2+x-2}\)
6,\(\frac{x+3}{x-4}+\frac{x-1}{x-2}=\frac{2}{6x-8-x^2}\)
7,\(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{1-x^2}\)
Giải các phương trình sau:
a) \(\left(\frac{x-2}{x-1}\right)^2-5\left(\frac{x+2}{x+1}\right)^2+4\left(\frac{x^2-4}{x^2-1}\right)=1\)
b) \(\left(\frac{x-1}{x}\right)^2+\left(\frac{x-1}{x-2}\right)^2=\frac{40}{9}\)
c) \(x.\frac{4-x}{x+2}.\left(\frac{8-2x}{x+2}\right)=3\)
d) \(\frac{1}{3x-2020}+\frac{1}{4x-2018}+\frac{1}{5x-2017}=\frac{1}{12x-2019}\)
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
Bµi 5: Gi¶i PT sau.
\(a,\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
b,\(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
d) (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
e) x4 + 2x3 + 4x2 + 2x + 1 = 0
\(f,\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
Tính giá trị biểu thức: B = \(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2017}\right)\)
rút gọn cấc phân thức sau:
\(A=\frac{2^3-1}{2^3+1}\frac{3^3-1}{3^3+1}\frac{4^3-1}{4^3+1}\cdot\cdot\cdot\frac{n^3-1}{n^3+1}\)
1,Giải PT
a,\(\frac{y-1}{y-2}-\frac{5}{y+2}=\frac{12}{y^2-4}+1\)
b,\(\frac{1}{4z^2-12z+9}-\frac{3}{9-4z^2}=\frac{4}{4z^2+12z+9}\)
c,\(\frac{5+2}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
1. Cho P= (\(\frac{\sqrt{x-1}}{3+\sqrt{x-1}}+\frac{x+8}{x-2}\)) : (\(\frac{3\sqrt{x-1}+1}{x-3\sqrt{x-1}-1}-\frac{1}{\sqrt{x-1}}\))
a) rút gọn P
b)tính P khi x= \(\sqrt[4]{\frac{3+2\sqrt{2}}{3-2\sqrt{2}}}-\sqrt[4]{\frac{3-2\sqrt{2}}{3+2\sqrt{2}}}\)
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\frac{x+4}{x^2-3x+2}-\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)