\(I=\int_0^{\pi/2}\sin^2 x.cos^3 xdx=\int_0^{\pi/2}\sin^2 x.(1-\sin^2 x)d(\sin x)=\dfrac{\sin^3 x}{3}\Big|_0^{\pi/2}-\dfrac{\sin^5 x}{5}\Big|_0^{\pi/2}=\dfrac{2}{15}\)
Do đó diện tích hình phẳng là $S=|I|=\dfrac{2}{15}$
\(I=\int_0^{\pi/2}\sin^2 x.cos^3 xdx=\int_0^{\pi/2}\sin^2 x.(1-\sin^2 x)d(\sin x)=\dfrac{\sin^3 x}{3}\Big|_0^{\pi/2}-\dfrac{\sin^5 x}{5}\Big|_0^{\pi/2}=\dfrac{2}{15}\)
Do đó diện tích hình phẳng là $S=|I|=\dfrac{2}{15}$
Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số y=x3+3x-2x,y=-x-2
Tính diện tích hình phẳng được giới hạn bởi các đường y=lnx,y=0,x=e
Tính diện tích hình phẳng giới hạn bởi các đường:
a) y = X2, y = x + 2; b) y = |lnx|, y = 1; c) y = (x – 6)2, y = 6x– x2
cho hàm số y=f(x) liên tục trên [0;π/2] thỏa \(\int_0^{\frac{\pi}{2}}f^2\left(x\right)dx=3\pi\) , \(\int_0^{\pi}\left(\sin x-x\right)f'\left(\frac{x}{2}\right)dx=6\pi\) ; \(f\left(\frac{\pi}{2}\right)=0\) Tính \(\int_0^{\frac{\pi}{2}}\left(f''\left(x\right)\right)^3dx\)
giúp em với ạ.
cho hàm số \(\frac{1}{3}x^3+mx^2-2x-2m-\frac{1}{3}\)(Cm). tìm m \(\in\left(0;\frac{5}{6}\right)\) sao cho diện tích hình phẳng giới hạn bởi (Cm) (với x=0, x=2) và đt y=0 bằng 4
Cho hàm số y=f(x) liên tục trên [0;+\(\infty\)] và \(\int_0^{x^2}f\left(t\right)dt=x.sin\pi x\). Tính f(4)
Cho hàm số \(y=f\left(x\right)\) có đạo hàm và liên tục trên \(\left[0;\dfrac{\pi}{2}\right]\)thoả mãn \(f\left(x\right)=f'\left(x\right)-2cosx\). Biết \(f\left(\dfrac{\pi}{2}\right)=1\), tính giá trị \(f\left(\dfrac{\pi}{3}\right)\)
A. \(\dfrac{\sqrt{3}+1}{2}\) B. \(\dfrac{\sqrt{3}-1}{2}\) C. \(\dfrac{1-\sqrt{3}}{2}\) D. 0
Gọi \(S_1\) là diện tích của hình phẳng bị giới hạn bởi trục hoành, \(y=\cos\left(2x\right)^{\sin\left(2x\right)}\) , \(x=a\) và \(x=\frac{\pi}{2}\) . Gọi \(S_2\) là diện tích của hình phẳng bị giới hạn bởi trục hoành, \(y=\cos\left(2x\right)\sin\left(x\right)\) , \(x=a\) và \(x=\pi\)
thoả mản điều kiện \(S_1.S_2=\frac{2\sqrt{2}}{3}\) , \(S_1+S_2=\frac{3\sqrt{2}+2}{3}\) và ( \(S_1-S_2>0\) )
Khi này tính \(\int\limits^{a+2}_{a+1}\left(a+1\right)x^adx\) bằng:
a) 3
b) 2a
c) 2
d) 1
26. Tính thể tích của vật thể tròn xoay khi quay quanh hình phẳng giới hạn vởi các đường y=4; y=-2; x=0; x=1 quanh trục Ox.
giúp em mấy bài nguyên hàm với ạ. huhu
1) cho f(x)=8sin bình(x+pi/12) một nguyên hàm F(x) của f(x) thỏa F(0)=8 là
A.4x+2sin(2x+pi/6)+9
B.4x-2sin(2x+pi/6)-9
C.4x+2sin(2x+pi/6)+7
D.4x-2sin(2x+pi/6)+7
2)cho f(x)=x*(e mũ -x) một nguyên hàm F(x) của f(x) thỏa F(0)=1 là
A.-(x+1) *(e mũ -x)+1
B.-(x+1)*(e mũ -x)+2
C.(x+1)*(e mũ -x)+1
D.(x+1)*(e mũ -x)+2