Đặt \(C=1+2+2^2+...+2^{2008}\)
\(\Leftrightarrow2C=2+2^2+...+2^{2009}\)
hay \(C=2^{2009}-1\)
\(B=\dfrac{C}{1-2^{2009}}=-1\)
Đặt \(C=1+2+2^2+...+2^{2008}\)
\(\Leftrightarrow2C=2+2^2+...+2^{2009}\)
hay \(C=2^{2009}-1\)
\(B=\dfrac{C}{1-2^{2009}}=-1\)
Tính B= 1+2+2^2+2^3+...+2^2008/1-2009
Tính:
B= 1+2+2^2+2^3+...+2^2008/1-2^2009
B=\(\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
tính tổng S= 1 + 2 + 2^2 + 2^3 +...+ 2^2008 : 1- 2^ 2009
Bài 1 :
a) 1+2+22+ 23+ ......+22008 /1-22009
cho A = 1 + 2 + \(2^2+2^3+...+2^{2008}\)
B = \(2^{2009}\)
tính B - A
1, Tính
a, 2008 . 2008 - 2010 . 2006
b, \(\dfrac{232323.29}{23.292929}\)
c, \(\dfrac{\left(2^{17}+5^{17}\right).\left(3^{14}-5^{12}\right).\left(2^4-4^2\right)}{15^2+5^3+67^7}\)
2, So sánh \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\) với 1
So sánh A và B
A\(=\dfrac{2007^{2008}+1}{2007^{2009}+1}\) và B\(=\dfrac{2007^{2009}+1}{2007^{2010}+1}\)
Tìm x biết
a, ( x + 1 ) + ( x + 4 ) + ( x + 7 ) + ... + ( x + 28 ) = 155
b, 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + ..... + \(\dfrac{2}{x+\left(x+1\right)}\) = \(1\dfrac{2009}{2010}\)
c, \(\left(\dfrac{2}{11.13}+\dfrac{2}{13.15}+\dfrac{2}{15.17}+.....+\dfrac{2}{19.21}\right)\) . 462 - x = 19