Ta có : \(B=\frac{1+2+2^2+....+2^{2008}}{1-2^{2009}}\)
Đặt :
\(H=1+2+2^2+2^3+.........+2^{2008}\) \(\Leftrightarrow B=\frac{H}{1-2^{2009}}\)
\(\Leftrightarrow2H=2+2^2+2^3+......+2^{2008}+2^{2009}\)
\(\Leftrightarrow2H-H=\left(2+2^2+.....+2^{2009}\right)-\left(1+2+2^2+....+2^{2008}\right)\)
\(\Leftrightarrow H=2^{2009}-1\)
\(\Leftrightarrow B=\frac{2^{2009}-1}{1-2^{2009}}=\frac{-\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)
Vậy...
Xét \(A=1+2+2^2+2^3+....+2^{2008}\)
\(\Leftrightarrow2A=2+2^2+2^3+...+2^{2009}\)
\(\Leftrightarrow2A-A=2^{2009}-1\)
Nên \(B=1\)