\(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}=\dfrac{\left(2^2\right)^5\cdot\left(3^2\right)^4-2\cdot\left(2\cdot3\right)^9}{2^{10}\cdot3^8+\left(2\cdot3\right)^8\cdot4\cdot5}=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8}=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+1\right)}=\dfrac{1-3}{1+1}=-\dfrac{2}{2}=-1\)