\(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\\ =\dfrac{\left(2^2\right)^5\cdot\left(3^2\right)^4-2\cdot\left(2\cdot3\right)^9}{2^{10}\cdot3^8+\left(2\cdot3\right)^8\cdot20}\\ =\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot20}\\ =\dfrac{2^8\cdot3^8\left(2^2-2^2\cdot3\right)}{2^8\cdot3^8\left(2^2+20\right)}\\ =\dfrac{4-4\cdot3}{4+20}\\ =\dfrac{-8}{24}\\ =\dfrac{-1}{3}\)