rút gọn
\(A=\frac{2}{\sqrt{4-3\sqrt[4]{5}+2\sqrt[4]{25}-\sqrt[4]{125}}}\)
\(B=\left(\frac{\sqrt[4]{4}-\sqrt[4]{2}}{1-\sqrt[4]{2}}+\frac{1+\sqrt{2}}{\sqrt[4]{2}}\right)^2-\frac{\sqrt{1+\frac{2}{\sqrt{2}}+\frac{1}{2}}}{1+\sqrt{2}}\)
Tính:
a) \(A=\frac{1-ax}{1+ax}\sqrt{\frac{1+bx}{1-bx}}\) tại \(x=\frac{1}{a}\sqrt{\frac{2a-b}{b}}\)
b) \(B=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
c) \(C=\frac{2}{\sqrt{4-3\sqrt[4]{5}+2\sqrt{5}-\sqrt[4]{125}}}\)
a. P= (\(3+\sqrt{2}+\sqrt{6}\))(\(\sqrt{6-3\sqrt{3}}\))
b. A=(\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\)): (\(\sqrt{6}+11\))
c. B= \(\frac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}\)-\(\sqrt{8}\)
d. C= \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
đ. D=\(\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
e. E= \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
ê. G= \(\sqrt{4+5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
g. H=\(\frac{2\sqrt{4+\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
i. I=\(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
k. K=\(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Tìm x :
h/ \(\sqrt{x+5}-10=-4\)
i/ \(\sqrt{x-5}+2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
j/ \(3\sqrt{2x}+\frac{1}{7}\sqrt{98x}-\sqrt{72x}+4=0\)
k/ \(\sqrt{4x^2-20}-\frac{1}{3}\sqrt{x^2-5}+\sqrt{\frac{9x^2-45}{16}}-\frac{1}{2}\sqrt{\frac{25x^2-125}{36}}=4\)
l/ \(\sqrt{4x+4}+\sqrt{9x+9}-\sqrt{x+1}=4\)
m/ \(\sqrt{16\left(x+1\right)}+\sqrt{4x+4}=16-\sqrt{x+1}+\sqrt{9x+9}\)
Giúp mk với nhé mn
Tính :
a, \(B=\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
b, \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
c, \(C=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}-\frac{\sqrt{5-2\sqrt{6}}}{3}\)
BÀI 1: RÚT GỌN
1)\(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}\)
2)\(\sqrt{7+2\sqrt{10}}+2\sqrt{\frac{1}{5}}-\frac{1}{\sqrt{5}-2}\)
3)\(\frac{3}{\sqrt{3}-1}+\sqrt{\frac{4}{3}}-\sqrt{8+2\sqrt{5}}\)
4)\(3\sqrt{\frac{16x}{81}}+\frac{5}{4}\sqrt{\frac{4x}{25}}-\frac{2}{x}\sqrt{\frac{9a^3}{4}}\)
5)\(\frac{1}{3}\sqrt{3a}-\frac{2}{3}\sqrt{\frac{27a}{4}}+\frac{5}{a}\sqrt{\frac{12a^3}{5}}\)
BÀI 2: GIẢI PHƯƠNG TRÌNH
\(1)\sqrt{5x-1}=\sqrt{2}-1\\ 2)\sqrt{1-2x}=\sqrt{3}-1\\ 3)4\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=20\\ 4)\frac{3}{5}\sqrt{\frac{25x-75}{16}}-\frac{1}{14}\sqrt{49x-147}=20\\ 5)\frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
BÀI 3: CHO BIỂU THỨC
Q=\(\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{2\sqrt{x}}{x-4}\) ĐKXĐ x ≥ 0, x ≠ 4
a) Rút gọn biểu thức Q
b) Tính Q thì x = 81
c) Tìm x để Q = \(\frac{6}{5}\)
d) Tìm x để nguyên đó Q nguyên
Tính
\(A=\frac{3}{\sqrt{3}}+\frac{2\sqrt{3}}{\sqrt{3}+1}\) \(B=\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\frac{1}{2-\sqrt{3}}\)
\(C=\frac{5+2\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}}-\left(\sqrt{5}+\sqrt{3}\right)\)
\(D=\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\) \(E=\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}-\frac{2-\sqrt{2}}{\sqrt{2}-1}\)
trục can thuc A= \(\frac{4}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
B=\(\frac{2}{\sqrt[3]{4}+\sqrt[3]{2}+2}\)
C=\(\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
3. a.\(\sqrt{\left(4-\sqrt{17}\right)^2}\)
b.\(\frac{2\sqrt{3}}{2}\)
c \(\frac{\sqrt{6}+\sqrt{14}}{\text{2√3+√28}}\)
d.\(\frac{x+1}{\sqrt{x^2-1}}\)
e.\(\frac{x^2-5}{x+\sqrt{5}}\)
f.\(\frac{2}{2-\sqrt{3}}\)
g.\(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
f.\(\frac{x\sqrt{x}-1}{\sqrt{x}-1}\)
i.\(\frac{3}{\sqrt{20}}+\frac{1}{\sqrt{60}}-2\sqrt{\frac{1}{15}}\)
k.\(\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{6}+\sqrt{2}}\)
i.(\(\frac{1}{\sqrt{5}-\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{3}}\))\(\sqrt{5}\)
h.\(\left(\sqrt{20}-\sqrt{45}+\sqrt{5}\right)\sqrt{5}\)
l.\(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
m.\(\frac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{\frac{4}{3}}\)
n.\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\right):2\sqrt{5}\)
d\(\left(2+\sqrt{5}\right)^2-\left(2+\sqrt{5}\right)^2\)